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1. The Problem
Much theory is available for very wide
networks and networks in the infinite-
width limit related to the Neural Tan-
gent Kernel; however it is not clear
if such theory is able to explain what
happens in real world models.
To answer this question, we measure
crucial quantities in the optimization
process of realistic models to test three
theories related to convergence, con-
ditioning, and generalization of deep
networks analyzed under the Polyak-
Łojasiewicz (PL) condition.

2. The PL Condition
Definition ℎ ∶ 𝑋 → ℝ is 𝜇-PL iff

1
2‖∇ℎ(𝑥)‖2 ≥ 𝜇 (ℎ(𝑥) − ℎ∗)

where ℎ∗ ∶= inf𝑥∈𝑋 ℎ(𝑥).
General Strongly convex ⟹ PL.
Minima Local minima are global:

‖∇ℎ(𝑥)‖ = 0 ⟹ ℎ(𝑥) = ℎ∗.
Uniqueness is not guaranteed.
Convergence is exponential under
common first-order methods [KNS16].
For example, when ℎ is 𝐿-smooth:
ℎ(𝑥𝑘+1) − ℎ∗ ≤ (1 − 𝜇

𝐿) (ℎ(𝑥𝑘) − ℎ∗) ,

where 𝑥𝑘+1 ∶= 𝑥𝑘 −
1
𝐿∇ℎ(𝑥𝑘).

Generalization estimates based on
stability are available [CP18]. Gener-
alization improves with a larger 𝜇 and
with more optimization (larger 𝑘), or
with a smaller lipschitz constant of ℎ.

3. Relations with Matrix Conditioning
Setting Consider 𝑛 examples (𝑥𝑖, 𝑦𝑖) ∈ 𝑋 × 𝑌 sampled i.i.d. from an unknown
distribution 𝒟. A network objective ℎ is a composition of a convex loss function
ℒ ∶ 𝑌 𝑛 → ℝ with the network evaluation on all points 𝐹 ∶ Θ → 𝑌 𝑛: ℎ = ℒ ∘ 𝐹 .
Because of PL theory, we are interested in the constants 𝜇 and 𝐿 for ℎ.
Relations with Conditioning It holds that 𝜇 ∝ 𝜆min(𝐾(𝜃)) and 𝐿 ∝ 𝜆max(𝐾(𝜃)),
where 𝐾(𝜃) ∶= ∇𝐹(𝜃)∇𝐹(𝜃)𝑇 is the finite tangent kernel matrix.
If we train only the last layer we have 𝜇 ∝ 𝜆min(𝐺(𝜃)) and 𝐿 ∝ 𝜆max(𝐺(𝜃)), where
𝐺𝑖,𝑗(𝜃) ∶= ⟨𝐹𝑖(𝜃), 𝐹𝑗(𝜃)⟩ is the kernel matrix of examples passing through the layers.
The conditioning 𝜅 of 𝐾(𝜃), as well as that of 𝐺(𝜃), decreases exponentially in
the depth of infinite-width networks [AAK21], and it is related to PL convergence
speed 𝛾 ∶= 1 − 𝜇/𝐿 ∝ 1 − 1/𝜅: lower conditioning means faster convergence.

4. Experimental Results
Below measurements relate to overparameterized fully connected networks with
ReLU nonlinearities trained under cross-entropy on CIFAR10.

Figure 1: Ratio between pre-
dicted and measured loss de-
crease at single epochs.

Result: The theory is very pre-
dictive at later epochs; much less
at the start of the optimization.

Future: Better predictions can
be used in Neural Architecture
Search or in fast model selection.

Figure 2: Log-conditioning of
𝐺(𝜃) for 500 examples at different
widths and normalization setup.

Result: Conditioning behaves
differently between renormalized
and non-renormalized networks,
contrary to the theory [AAK21].

Future: Study finite-widths ef-
fects on conditioning, as [AAK21]
relies on central limit theorem.

Figure 3: Mean progression of
log-conditioning during training.

Result: Conditioning worsens
very slowly during training and
even improves, contrary to cur-
rent theories on wide networks.

Future: Understand the under-
lying phenomena causing a stable
conditioning, which simplifies the
theoretical analysis of networks.
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