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Abstract

Despite significant progress, StyleGAN-based face editing is still limited by undesir-
able attributes, dependencies and artifacts that decrease the quality of generated images.
While more well-annotated training data would likely improve on these problems, col-
lecting such data at scale is very expensive. We propose a face editing architecture that
significantly improves the image quality, allows precise specification of individual at-
tributes, and facilitates the introduction of new attributes. We take advantage of recent
advances that couple the creation of a latent representation of an image with associated
natural language as well as techniques that find linear correlations between the GAN latent
space and the attributes of the image, enabling regression models. Our approach deploys
carefully chosen regularization approaches that are critical to the integration of these
techniques. We demonstrate the ability to edit photorealistic images of faces, originating
both from GAN generation and from real images through GAN inversion.

1 Introduction
In recent years, face editing techniques based on generative models such as generative
adversarial networks or variational autoencoders had witnessed an explosion in popularity,
due to their ability to apply semantically meaningful local and global edits to images without
the need to create an explicit representation of the modeled face. One of the most popular
architectures that has been used as a basis of face edits is the StyleGAN family of models,
due to their well-behaved latent space [10].

While early StyleGAN-based models that allowed the editing of attributes such as pose,
age, and facial hair represented spectacular progress compared to previous approaches in
the realism and quality of the edited images, significant limitations remained. For instance,
for certain face/attribute combinations, the edited images exhibited significant artifacts and
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Figure 1: Examples of the image quality and range of attributes that can be edited with the
proposed approach. The projected original image is in the top left followed by several edited
images.

unrequested changes to other attributes. An ideal face editing system would allow the fine-
grain specification of a wide range of attributes while retaining the unrelated attributes and
the personal identity of the face. Furthermore, the system should be easily extendable to new
attributes.

A natural way to make progress towards this goal is to use large amounts of high-quality
images carefully labeled with the values of all possible attributes.

The primary insight of this paper is that the necessary amount of training data to improve
the quality of the edits can be reduced by a better understanding of the latent spaces of the
generator and the type of changes that lead to high-quality visual instances. For instance,
recent research has shown that the StyleGAN latent space contains smooth linear directions
that allow the creation of a regression model for attributes [15]. Furthermore, while there
are many points in the latent space that correspond to a given attribute value, we find that
a mapper that was trained with specific, well-chosen regularizations can find encodings for
edited images that correspond to higher quality edits.

Our final insight is that we can improve the training process without the need of hand-
annotated images by taking advantage of recent advances in models that contain joint en-
codings of images and natural language. For instance, the CLIP [17] architecture can be
used to generate annotations for the training data for a wide range of attributes, by providing
descriptive labels.

The contributions of this paper can be summarized as follows:
1. We created a face editing architecture that uses regression in the StyleGAN latent

spaces with appropriate regularizations to find disentangled attribute directions.
2. We designed a CLIP-based approach to extend the training data for the face editor.
Figure 1 illustrates the image quality and broad range of attributes that can be edited using

the proposed approach. Figure 2 shows the high-level concepts of face editing.

2 Related Work
Using GANs to edit images has recently attracted a lot of attention due to the outstanding
ability of current generative models to generate high-resolution real-looking photos.

One of the early approaches to control the image generation of GANs was conditional
GAN [13] that passes the labels to both generator and discriminator during training to
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Figure 2: Training: After the data preparation step, we train a regression network for available
attributes using appropriate regularizations. The attribute directions W = [W1,W2, . . . ,WNa ]
are the weights of the regression network. Inference: For a given face, we first encode it to
the StyleGAN latent space and add the direction Wi to edit the attribute i.

condition image generation to different classes. Different techniques were proposed for
conditional GANs training using paired [7] or unpaired data [2, 26]

More recent approaches for controlling image generation focus on editing the latent vector
corresponding to an initial image such that the newly edited image has the same identity but
different attributes like “Smile” or “Facial hair”. These approaches significantly reduce the
computational resources required to train high-quality models such as StyleGAN [9]. [5]
use PCA on sampled latent codes to find directions in the latent space such that moving in
those directions could result in change in the target attribute. [25] use low-rank subspace
to control the generation of GANs. StyleFlow [1] uses continuous normalizing flows and a
neural differential equations solver to train a non-linear function for editing vectors in latent
space. [24] train a transformer with losses in latent space to edit attributes.

[18] propose InterfaceGAN based on the assumption that a hyperplane or separation
boundary exists for each attribute in the latent space. Thus, by moving in the orthogonal
direction to that hyperplane, we can change the target attribute. [11] train a lat-2-lat model
to map a latent vector to a new latent such that the image generated from the new one has
the target attribute. [21] discover style channels based on gradient maps from the generated
image with respect to each channel in S space and identify the channels that control a target
attribute.

Recently, [6] leveraged attention to find the layers that have a greater impact on target
attributes. This automatic way of finding these layers removes the need for some manual
adjustments. [4] use disentangled transforms and instance-aware search to edit a latent vector
and corresponding generated image. [8] proposes a neural network that finds directions in
the latent space based on target parameters without conditioning the network on the latent
vector. StyleRig [19] uses losses defined between the generated image and original image
based on the pose, illumination and expression to edit the latent vector. [14] propose a method
that combines attributes and face identity features from two different images to generate a
new image with losses on identity and attributes. Another method for editing directions is
StyleCLIP [16] that leverages CLIP [17] text and image encoder to find S channels in latent
space that have the highest correlation with the target text.

3 Face editing
Let us consider an image of a face I, represented in a StyleGAN latent space by a vector x.
We will call an attribute of the image quantifiable if we can measure the degree at which
it is present in the face with a real number in a given interval. Most attributes commonly
considered in face editing such as age, degree of smile or the angle of the head position are
quantifiable with all possible values in an interval corresponding to realistic images. For other
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attributes, such as "wears eyeglasses", intermediate values might not correspond to real-world
pictures.

We define the goal of face editing as the modification of a quantifiable attribute a of the
image with a positive or negative degree α . To achieve this, we are searching for a direction
in the latent space Wa associated with a such that Ie = StyleGAN(x+αWa) is the image with
the desired edit applied.

When we refer to the latent space in which the vector x is encoded, we are considering sev-
eral possibilities corresponding to different locations in the flow of activations in a StyleGAN
architecture: the W space of the original implementation, the extended W+ space that allows
different styles to be applied at different levels of the hierarchy and the so-called stylespace S
which includes the additional affine transformation at each level. Previous research [23] has
shown that all the latent spaces of StyleGAN are highly semantic with respect to the attributes.
However, there are important differences between W , W+ and S in the way they map related
images, making them suitable for different tasks. For instance, we found that the best results
are obtained when using the S space for editing real faces. In the following discussion we will
assume that all the images had been encoded in the appropriate latent space using a suitable
encoder.

3.1 Model
Let us consider a collection of N images I1 . . . IN and a set of NA attributes a1 . . .aNA . The

training data we are considering will have the form D = (xi,y1
i ,y

2
i , . . . ,y

NA
i )

N
i=1, where xi is the

latent encoding of image Ii and yk
i is the value of the quantifiable attribute ak in that image.

Determining the attribute values yk
i is one of the major challenges of this work. As we discuss

in Section 4, the values can be either collected by human annotation, pretrained regressors,
and/or in an unsupervised manner. Furthermore, our architecture allows the training even if
some of the attribute values are missing.

[15] has shown that it is possible to train regression models such that given a StyleGAN
latent code x can accurately predict the magnitude of an attribute y j (age in years or head pose
in degrees) in the corresponding image. The regressor achieves this by measuring the distance
between a latent code from a separating hyperplane induced by a matching attribute linear
latent direction:

y j =W T
j · x (1)

The direction for attribute j can be found by:

W ∗
j = argmin

W j

L(S) = ∥W T
j X −Y∥2 , (2)

where Y = [y j
1,y

j
2, . . . ,y

j
N ] and X = [x1,x2, . . . ,xN ]. xi is the latent vector of the i-th image in

the dataset, y j
i is the value for the target attribute j, and N is the number of images in training.

This suggests that if we move in the attribute’s linear latent direction, the amount of the
corresponding attribute of a given image would change. Let’s assume y1 =W T · x if we move
in the attribute direction W we have:

y2 =W T · (x+αW ) =W T · x+αW T ·W = y1 +α, (3)

assuming that W has a unit norm.

Citation
Citation
{Xia, Zhang, Yang, Xue, Zhou, and Yang} 2021

Citation
Citation
{Nitzan, Gal, Brenner, and Cohen-Or} 2021



MOTIIAN, KHODADADEH, GHADAR, BÖLÖNI: FACE EDITING 5

3.2 Regularization techniques
As any solutions satisfying Eq. 1 also change other, unrelated attributes and/or do not keep the
identity of the person, we cannot naively use W for face editing. We can restrict the system to
solutions that retain the identity of the person and minimize the changes to other attributes by
adding regularizers to the optimization criteria. We deployed two types of regularizers based
on weight magnitude and weight orthogonality respectively. We found that the appropriate
choice of regularizations depends on the latent space used for the input.
Weight magnitude regularizers based on the L1 and L2 metrics are commonly used when
performing regression in a high-dimensional feature space. When used in the context of the
W+ latent space, their primary effect is to reduce the impact of insignificant independent
variables and prevent overfitting. In practice, we found that both highly improve the quality
of edited images and show similar performance.

The situation is different in the case of the S-space. Recent research had shown that
vectors in the S space are sparse [22]. This makes us strongly prefer the L1 regularizer which
specifically encourages sparsity, compared to the L2 regularizer which does not have such
an effect. This is especially important when our starting point is a real-world photograph
encoded into the StyleGAN latent space. The complexity of the encoding process usually
creates encodings that are only approximately sparse, with small values rather than zeros.
Having a sparse direction helps ameliorate this artifact.
Orthogonality regularization: Let us consider two orthogonal attribute directions W1 and
W2 (meaning W T

1 ·W2 = 0 ) and y1 =W T
1 ·x and y2 =W T

2 ·x. We note that y2 does not change
by moving in W1 direction:

ye
2 =W T

2 · (x+αW1) =W T
2 · x+αW T

2 ·W1 =W T
2 · x = y2 (4)

Similarly, y1 does not change by moving in the W2 direction. The same technique can be
applied to all the NA attributes.

In most cases we prefer disentangled attributes: we aim to be able to edit an attribute
without changing any of the other attributes. For instance, we want to be able to change the
age without changing the gender. Imposing an orthogonality regularization on these attributes
can achieve this goal.

It is important to note, however, that not every named attribute is logically independent.
For instance, the Smile and Smirk, while not identical, would likely need to have correlated
latent directions. Another example is attribute pairs such as Beard and Facial Hair, where
it is impossible to increase the former without increasing the latter as well. We need to be
careful not to apply orthogonality regularizations for such pairs.

Putting all the regularization techniques together, the total loss used to train our network
will be

W ∗
j = argmin

W j

L(X) = ∥W T
j X −Y∥+ β1L1(Wj)/L2(Wj)+β2Σ

NA
k=1,k ̸= jW

T
j ·Wk , (5)

where X is the latent code (S or W+) and NA is the number of attributes available in training.

3.3 Model architecture
Our face editing architecture solves Eq. 5 using a multilayer perceptron (MLP) with linear
activation. The MLP takes a vector in the S-space or W+ space as input and outputs NA
values, the number of attributes in training. In this implementation, the attribute directions are
the weights of the MLP after training. We can use the mean square loss for the first term in
Eq. 5 and adding L1 (L2) and orthogonality regularizations on the weights are trivial.
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(a) Age in S space

(b) Smile in S space

(c) Hair in S space

(d) Head Pose in W+ space

(e) Straight hair / curly hair - using CLIP

(f) Chubbiness - using CLIP

(g) Beaming - using CLIP

(h) Multi-attribute editing. Given the original projected image in left: making the person younger, adding more hair, smile and eyeglasse

Figure 3: Examples for face editing. The unmodified images are in the center.
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β1 = 0

β1 = 100

β1 = 10000

Figure 4: The effects of L2 regularization in W+ space.

(a) Age in S space with L1 regularization without orthogonality regularization.

(b) Age in S space with L1 regularization with orthogonality regularization.

Figure 5: The effects of orthogonality regularization.

4 Enhancing data collection using joint natural language
and image models

Using the approach described in the previous section to find the directions for specific
attributes relies on the existence of high-quality training data. While it is comparatively easy
to collect a variety of face images, providing quantitative annotations for a range of attributes
is a difficult and expensive labeling task. These labels can be acquired through a variety of
techniques. For some attributes, manual annotation might be available from existing datasets.
For other attributes, such as Age, Smile or Hair, there might exist pre-trained, off-the-shelf or
proprietary classifiers or regressors that allow the generation of attributes automatically from
the image of a face. In this work, we took advantage of all these techniques.

However, for most attributes, especially newly proposed ones, neither existing annotations,
nor pretrained classifiers exist. Furthermore, creating new classifiers would require, on their
turn, the existence of labeled data. Another difficulty is that certain attributes, such as Curly
Hair are subjective, and difficult to consistently label with a numerical value. A possible
solution to this dilemma is to take advantage of recent research in joint natural language /
image models, such as the CLIP [17] model.

Our main idea is to replace y j in Eq. 1 with unsupervised scores generated by CLIP. CLIP
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Figure 6: Identity change for face editing. For each value for α and a target attribute, we edit
the original image and compute the cosine similarity between Arcface embeddings of the
two images: score = Eo ·Ee where Eo and Ei are the normalized Arcface embeddings of the
original image and the edited image. The numbers are the average scores of 15 faces.

has two encoder networks: the text encoder ET and the image encoder EI . Let us assume we
have a set of M phrases for target attributes, P = {p1, . . . , pM}. Having an unlabeled dataset
U = {Ii}N

i=1, we find the CLIP image feature vectors of every image by preprocessing and
passing them into EI . As a result, we have CLIP image features for every image in our dataset.

We also generate a new set of antonyms for every phrase in P . In other words, we
have A= {antonym(pi)} for every phrase pi ∈ P . The antonym function is based on NLTK
library [12]. Next, we calculate the text features using the CLIP text encoder by passing every
phrase and their antonyms into ET . As a result, we get two matrices of size M × 512. We
refer to these two matrices by MP and MA. For every image in our batch during training, we
compute the two following similarity scores: SIP = EI(Ii)∗MP and SIA = EI(Ii)∗MA. We
compute the element-wise softmax between SIP and SIA . This gives us a vector of length M
in which every element shows the score for similarity for this phrase compared to its antonym.
We use this vector as values for y j in Eq. 1.

5 Experiments
In this section we evaluate the ability of the proposed technique to find the latent direction
and edit attributes of photorealistic images such as Age, Smile, Gender, Eyeglasses, Head
Pose, Hair, Chubbiness, Beaming, and Curly Hair.

For training the attribute directions we used 60k images from the FFHQ [9] dataset. We
use a pretrained attribute regressor to collect labels for the Age, Smile, Gender, Eyeglasses,
and Head Pose attributes. We used the CLIP-based approach discussed in Section 4 for the
Chubbiness, Beaming, and Curly Hair attributes.

To find a latent encoding for an image we use the pretrained e4e encoder [20] to inverse
an image to the latent space W+ followed by the mapping network in StyleGAN to get the S
vectors.

We have investigated the approach using both S and W+ as the latent space. Using
S-space has the advantage of being more disentangled than the other intermediate latent
spaces where, each style channel is shown to control a distinct visual attribute in a highly
localized and disentangled manner. We found that the W+ space has an advantage when an
edit requires a significant geometric change, such as for a Head Pose edit with a significant
angle change.

In the following we discuss the results with respect to several considerations.
A. Attribute Manipulation We use FFHQ images and their collected labels to solve Eq. 5
using the network described in 3.3. For Chubbiness, Beaming, and Curly Hair attributes, we
did not use any orthogonality regularization in order to investigate the effectiveness of the
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Figure 7: A quantitative comparison of identity preservation based on Figure 4 of [24].
For each method, we edit each target attribute with several scaling factors and generate the
modified images.

CLIP-based approach. The output of the network is a set of attribute directions (Wi for i-th
attribute). Image editing can be done by adding attribute directions to the S (or W+) vector.
For single attribute editing we have Ie = StyleGAN(S+αiWi), where αi controls the amount
of the edit for i-th attribute.

Figure 3(a-d) shows face editing results for four attributes (Hair, Smile, Age, and Head
Pose). Each row contains five generated images corresponding to five α values, from a
negative value to a positive value. The image in the center corresponds to α = 0 which is
the projected original image. Figure 3 shows that only the target attribute changes when
editing an image. All other attributes and the identity stay the same. For Head Pose, we
solve Eq. 5 using the network described in 3.3 with L2 regularization in W+ space. For the
multi-attribute editing, we have Ie = StyleGAN(S+∑

n
i=1 αiWi), where αi controls the amount

of the edit for attribute i. In Figure 3(h), we do several edits given the original projected image
in left: making the person younger, adding more hair, smile and eyeglasses. Although this
all can be done in one forward pass, we break it down into several parts in order to show the
intermediate images. Figure 3(e-g) shows face editing results for the Curly Hair, Chubbiness,
and Beaming attributes. Refer to supplementary material for examples of face editing for the
Eyeglasses and Gender attributes.
B. Identity Preservation. For most face editing tasks, the implicit goal is to change attributes
without changing the identity of the person represented in the picture. We measure the amount
of identity change by comparing the outputs of a pretrained face network (Arcface [3])
given the original image and edited images. The editing results are highly dependent on
the parameter α . Since the StyleGAN would generate non-realistic faces for very high/low
values of α (because very high/low values push vectors in S or W out of the StyleGAN
latent distributions), finding a lower bound and an upper bound for α is crucial. Given that
different methods would produce different attribute directions (and different lower/upper
bounds) for a target attribute, comparing the identity change amounts is not straightforward.
We L2-normalize our attribute directions and find the appropriate lower bound and upper
bound for α using manual inspection. Figure 6 shows the amount of identity change for the
applicable range of α . Even for values near the upper bound and lower bound, the amount of
the identity drops is small. The cosine distance between the original image and the edited
image is less than 0.01. Figure 7 comparing the level of identity preservation for the Latent
Transformer model [24], InterfaceGAN and our approach. We find that our approach has a
slight advantage compared to the other approaches.
C. Editing Disentanglement. How much editing a face using a target attribute direction
would affect the rest of the attributes? The optimum direction for a target attribute is the one
that does not affect the rest of the attributes. We compare the outputs of the pretrained classifier
given the original image and the edited image. We use a pretrained classifier that estimates
Smile, Age, Hair, and Gender attributes given an image. Figure 8 shows the performance for
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Figure 8: Attribute change for face editing. For the given attribute and α , we edit the original
image and compute the L2 distance between the outputs of a pretrained classifier given the two
images. The numbers are the average scores of 15 faces, and we remove the target attribute
when computing L2 distance. We report 1−L2 instead of L2 to be consistent with Figure 6.

the appropriate range of α for Smile, Age, and Hair attributes. Even with the values close
to the lower bounds and upper bounds, the attributes change is small. We also normalize
directions of InterfaceGAN method with manual inspection so that both approaches (ours
and InterfaceGAN) generate visually similar faces for a given α . In this way we can compare
two methods. For most values of α our method provides less attribute change.

D. Importance of L2/L1 Regularization. We solve Eq. 5 for the Head Pose attribute in W+

space using the L2 regularization and β1 = 0,100,10000 in order to investigate the benefit of
using the regularization. Figure 4 shows that the direction obtained by β1 = 0 (not using L2
regularization) does not change the Head Pose attribute and ruins the quality of the images.
The direction obtained by using β1 = 100 changes the Head Pose attribute but changes the
identity of the test image. When β1 is large enough, the regression model provides the desired
attribute direction. We observed similar behavior when training directions in S space.

E. Importance of Orthogonality Regularization. We train a latent direction for the Age
attribute without orthogonality regularization in S space and report the results in Figure 5.
The figure shows that there is an entanglement between Smile and Age for negative values of
α , when the person becomes younger. But the latent direction obtained by using orthogonality
regularization (Figure 3 (a)) does not show that entanglement.

F. Qualitative Comparison with InterfaceGAN and Latent Transformer [24]. Figures
(1) and (2) of the supplementary material show the comparison between our method and
InterfaceGAN. We trained InterfaceGAN on the same training data, labels, and CLIP labels
we used for our model. In general, both methods work well but we noticed some small artifacts
(entanglement between attributes) by using InterfaceGAN. For Hair and Age attributes, there
are hair color change for InterfaceGAN-based edits. Also, it looks like the Age attribute
change (the person looks younger) when increasing Hair attribute for InterfaceGAN-based
edits. For Smile attribute, it looks like eyes become narrower when increasing Hair attribute
for InterfaceGAN-based edits. Furthermore, we observe better disentanglement when we use
CLIP scores with our method. We observe more changes in skin tone, eyes and background
for Curly Hair and Beaming attributes when we train them by InterfaceGAN. We include
more examples in the supplementary material (Figures (3 - 6)). We saw similar pattern when
comparing our approach with the Latent Transformer approach. Please refer to Figure (7) of
the supplementary material for visual comparison.

G. More Qualitative results. We added visual results for more face attributes and compar-
isons in the supplementary material.

H. Conclusion. We showed that linear regression can be used in the StyleGAN latent spaces
for face editing using appropriate regularizers.
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