ORA3D: Overlap Region Aware Multi-view 3D Object Detection

Wonseok Roh¹, Gyusam Chang¹, Seokha Moon¹, Giljoo Nam², Chanyoung Kim¹, Younghyun Kim³, Sanpil Kim^{1*}, and Jinkyu Kim^{1*}

¹Korea University, ²KAIST, ³Hyundai Motor Company

Project Page : https://kuai-lab.github.io/bmvc2022ora3d

Multi-view Camera System

- Alternative balanced option of the monocular and stereo vision systems.
 - > Potentially replace LiDAR.
- Adjacent cameras have a
 - strong association. (Overlap Region)

Main Architecture

YUNDA

MOTOR GROUP

KOREA

Limitations of Previous Work (DETR3D)

Front Camera

Front Right Camera Front Right Camera

Back Right Camera

- We found that the network (without explicit guidance) does not totally use the geometric potentials of multi-view camera systems.
- > Multiple false positives in the overlapped regions.

Domain Shift Issue (Non-Overlap vs. Overlap)

(1) Stereo Matching Network for Weak Depth Supervision

Stereo Disparity Estimation head reconstructs a dense disparity map with overlap region pairs of neighboring cameras.

- > We empirically observe that DNN has a **strong inductive bias.**
- As we clearly see in the first row (DETR3D), the features of each two groups form **distinguishable clusters**.

Experimental Results

Performance Comparison with SOTA on the nuScenes dataset

Model	Mono Mult	i Ba	ickbone	NDS(†)	mAP(†)	Mo	del	Mono	Multi	Backbone	NDS((†) mAP(*	(↑)			
CenterNet [1] FCOS3D [2] PGD [1]	Mono Mono Mono	D Res Res	DLA34 SNet101 SNet101	0.3280.306010.4150.343010.4280.369		FCOS3D [[] PGD [[] DD3D* [[]		Mo Mo Mo	no I no I no	ResNet101 ResNet101 V2-99	0.428 0.448 0.477	8 0.358 8 0.386 7 0.418		Summar		
DETR3D [53] DETR3D [†] [53]	Multi Multi	Res Res	Net101 Net101	0.425 0.434	0.346 0.349	DETR3 BEVDe	3D [‡] [[]]	Mu Mu	lti lti	V2-99 V2-99	0.479 0.482	9 0.412 2 0.422		We report		
Ours	Multi	Res	Net101	0.445	0.367	Ours [‡]		Mu	lti	V2-99	0.48	9 0.423	3	the over		
(a) Validation set (b) Test set Average Precision for each object class on the nuScenes test set														multi-view		
Model	Car	Truck	a Bus	Traile	er C.V	Ped	. Mo	tor.	Bicycle	T.C	Barr	ier mA) _P	We proposition		
DETR3D [1] Ours	0.603 0.609	0.333 0.338	0.290 0.323	0.358 0.347	8 0.170 7 0.17 4) 0.45 4 0.46	5 0.4 7 0.4	13 20	0.308 0.311	0.627 0.649	0.56 0.5 8	65 0.41 89 0.42	2 23	model on		
Performa	ance C	om	pariso	on in (Overla	ap Re	egion							that this s		
Model	Mono	I ulti	NDS (†)	DS (†) mAP (†)		ГЕ (↓)	$E(\downarrow)$ mASE		nAOE (↓) mAV	E (↓)	mAAE (↓)		We introd		
FCOS3D [22]	Mon	0	0.317	0.21	3 0.841		0.27	6 0.60		1.1	22	0.173		minimize t		
DETR3D [E3] Ours	Mult Mult	ti ti	0.356 0.408	0.231 0. 0.264 0.		325 0.280 677 0.280		0 0	0.400 0.361	0.8 0.7	0.863 0.746			from over		

Although this region is relatively small, it serves as a geometric link between two images.

(2) Adversarial Overlap Region Discriminator

- We propose to use a regularizer to explicitly minimize the representational gap between **non-overlap regions vs. overlap regions**.
- We constrain the object detection head from learning region-invariant information via an adversarial framework using Gradient Reversal Layer.

(3) Total Loss

$$\mathcal{L}_{total} = \lambda_{cls} \mathcal{L}_{cls} + \lambda_{box} \mathcal{L}_{box} + \lambda_d \mathcal{L}_d - \lambda_r \mathcal{L}_r$$

We report that existing works often neglect properly dealing with objects in

the overlap region, which limits fully using the geometric potentials of

multi-view camera systems, causing performance degradation.

We propose to use outputs from the traditional stereo disparity estimation model on the overlap region and apply them as weak supervision to improve the detection accuracy over the overlap region. We empirically find

that this supervision significantly improves the overall detection accuracy.

We introduce an overlap region discriminator that adversarially learns to minimize the covariate shift between objects from non-overlap regions vs. from overlap regions.