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Overview

We first provide details of obtaining overlap region, which is essential to apply multi-view
stereo matching (Section A). Also, we explain implementation details, including training
details for stereo disparity estimation (Section B). Next, section C provides additional quali-
tative results with more diverse scenes. Moreover, we further provide examples in the follow-
ing project website: https://kuai-lab.github.io/bmvc2022ora3d. Our code
is provided as a separate file.

A. Obtaining Overlap Region in Multi-view Camera System

In the general architecture of the multi-view camera system, cameras are organized cylin-
drically on a plane. Cameras are also spaced apart at regular intervals to capture 360-degree
surrounding information. Structurally, all adjacent camera pairs have a degree of overlap
between the images captured by the two. Although this overlap from adjacent cameras is
typically small, it serves as a geometric link between two images. Thus, in order to derive
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the geometric potential of the overlap region, it is essential to find the accurate overlap region
above all else.
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Figure 1: Overview of finding the overlap re-
gion between the front and front right camera.

Our model finds the precise overlap re-
gion using projection matrices of each cam-
era. The overview of this process, which
is the basis of our model, is represented in
Figure. 1. The whole pipeline starts with a
set of six images for I = {i f , i f r, . . . , ibr} ∈
RH×W×3 and combinations of camera in-
trinsics and extrinsics. 2D image pixels are
explicitly positioned according to the scene
depth in the 3D domain. Therefore, we
adopt the infinity value as the depth to reach
the accurate real-world location. First, the
process of converting the 2D coordinates
X2D

f = [u, v], which is expected to be an
overlapping point with the right adjacent
camera of the front camera, into 3D coor-
dinates by applying infinite depth d∞ is de-
scribed below.

X3D
f = [u ×d∞, v× d∞, d∞] (1)

X3D
f denotes the 3D representation of X2D

f . We convert 4D by concatenating 1 to X3D
f as

below in order to multiply it with a transformation matrix having a 4×4 shape.

X4D
f = X3D

f ⊕ 1 (2)

Then multiply the transformation matrices T = {T f ,T f r, . . . ,Tbr} ∈R4×4 to convert camera
coordinates X4D

f into the egocentric coordinates.

Xego
f = T f · X4D

f (3)

Here, we need to translate the egocentric coordinates Xego
f into 3D points of the camera space

neighboring to the right. Specifically, this process goes reverse to the camera-to-egocentric
process conducted above, and the target is the front right camera space. To do that, we lever-
age T−1

f r , the inverse matrix of T f r, as shown below.

X∗4D
f r = T−1

f r · Xego
f (4)

Afterwards, we divide X∗4D
f r by the pixel depth dX to project it completely into X4D

f r , which
corresponds to the homogeneous coordinate system.

X4D
f r = X∗4D

f r / dX (5)

We accurately define that X2D
f r = [u, v] ∈RH×W belongs to the overlap domain via the above

process. Ultimately, we can reliably determine the boundaries between overlap and non-
overlap regions in each image.
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B. Implementation Details

Training Details. We implement our model upon DETR3D [3] architecture. Following the
default setting used by DETR3D, our model is trained end-to-end using AdamW [2] as an
optimizer with the learning rate 3e-5. The whole model is trained for 30 epochs on four
NVIDIA GeForce RTX 3090 GPUs, distributing one scene (six images) per GPU. Since
the stereo disparity estimation network and the adversarial overlap region discriminator are
turned off during inference, the inference time would remain the same as that of DETR3D.
We use the publicly available nuScenes as our dataset. The input image size is 1600 ×
900. Model evaluation is performed on ten classes: i.e., car, truck, construction vehicle, bus,
trailer, barrier, motorcycle, bicycle, pedestrian, and traffic cone.
Stereo Disparity Estimation Details. As shown in Figure 4 in the main paper, our stereo
network first obtains 2D features F ∈ R B×C×H×W from a general feature extractor for each
image. Then, our model utilize the pixel-wise correlation module to learn rich stereo rep-
resentations and fuse multi-scale hierarchical stereo features to estimate the disparity map
densely. The shape of the disparity map output from the module is [B,C,H/4,W/4], which
is down-scaled by four compared to the original image shape. Three multi-scale volumes
within the network are used to form a cost volume pyramid and are finally output via an
inference layer. Note that our disparity estimation module is supervised only for the over-
lapped areas, but we empirically exhibit that it significantly improves the network’s overall
3D object detection performance.

C. Qualitative Results
In this section, we provide additional qualitative examples of ORA3D. The nuScenes [1]
dataset is an optimal multi-view dataset for executing tasks such as detection and tracking.
Especially, the presence or absence of LiDAR points determines the ground-truth bounding
box. For instance, if an object is not visible in the image due to occlusion, but there are
LiDAR points for the object, it becomes a ground-truth box. Conversely, if there are no
LiDAR points for an object visible in the image, it is not for the ground-truth box.

Figure 2 and Figure 3 show the additional visualized results of 3D bounding boxes pre-
dicted by DETR3D [3] (see green boxes) and ORA3D (see magenta boxes). We project the
predicted and ground-truth bounding boxes onto images from six different perspectives and
Birds’-Eye View. DETR3D predicts 3D coordinates directly from 2D features without using
depth cues and achieves promising results in 360-degree. However, DETR3D suffers from
ghost boxes (false positive boxes) in the overlap region due to a lack of considering surround-
view camera system relationships. In this paper, we enhance the overall performance by de-
veloping novel approaches (Stereo Disparity Estimation for Weak Depth Supervision and
Adversarial Overlap Region Discriminator) to reasonably use overlapped regions that are
small but highly informative.
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Figure 2: Examples of 3D bounding boxes predictions. The blue, green, and magenta boxes
denote ground-truth, DETR3D prediction, and the prediction of ORA3D, respectively. The
red dotted lines in the upper BEV images indicates the overlap region between the back right
and back cameras of multi-view.
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Figure 3: Example of 3D bounding box prediction for a car-crowded scene. Predictions and
ground-truth boxes have the identical representation as mentioned in Figure 2.
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