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Abstract
Modeling real-world distributions can often be challenging due to sample data that

are subjected to perturbations, e.g., instrumentation errors, or added random noise. Since
flow models are typically nonlinear algorithms, they amplify these initial errors, lead-
ing to poor generalizations. This paper proposes a framework to construct Normalizing
Flows (NFs) which demonstrate higher robustness against such initial errors. To this end,
we utilize Bernstein-type polynomials inspired by the optimal stability of the Bernstein
basis. Further, compared to the existing NF frameworks, our method provides compelling
advantages like theoretical upper bounds for the approximation error, better suitability
for compactly supported densities, and the ability to employ higher degree polynomials
without training instability. We conduct a theoretical analysis and empirically demon-
strate the efficacy of the proposed technique using experiments on both real-world and
synthetic datasets.

1 Introduction
Modeling the probability distribution of a set of observations, i.e., generative modeling, is
a crucial task in machine learning. It enables the generation of synthetic samples using the
learned model and allows the estimation of the likelihood of a data sample. This field has
met with great success in many problem domains including image generation [20, 24, 30],
audio synthesis [13, 33], reinforcement learning [31, 39], noise modeling [1], and simulat-
ing physics experiments [40, 41]. In the recent past, deep neural networks such as gener-
ative adversarial networks (GANs) and variational autoencoders (VAEs) have been widely
adopted in generative modeling due to their success in modeling high dimensional distri-
butions. However, they entail several limitations: 1) exact density estimation of arbitrary
data points is not possible, and 2) training can be cumbersome due to aspects such as mode
collapse, posterior collapse and high sensitivity to architectural design of the model [25].

In contrast, normalizing flows (NFs) are a category of generative models that enable exact
density computation and efficient sampling (for theoretical foundations see Appendix 1.1 and
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references therein). As a result, NFs have been gaining increasing attention from the machine
learning community since the seminal work of Rezende and Mohamed [35]. In essence, NFs
consist of a series diffeomorphisms that transforms a simple distribution into a more complex
one, and must be designed so that the Jacobian determinants of these diffeomorphisms can
be efficiently calculated (This is, in fact, an essential part of the implementation). To this
end, two popular approaches have been proposed so far: 1) efficient determinant calculation
methods such as Berg et al. [4], Grathwohl et al. [18], Lu and Huang [30], and 2) triangular
maps [9, 10, 23]. The key benefit of triangular maps is that their Jacobian matrices are
triangular, and hence, the calculation of Jacobian determinants takes only O(n) steps as
opposed to the O(n3) complexity of the computation of a determinant of an unconstrained
n×n−matrix. In this paper, we focus only on triangular maps.

On the one hand, it is not a priori clear whether such a constrained class of maps is ex-
pressive enough to produce sufficiently complex transformations. Interestingly, [6] showed
that, given two probability densities, there exists a unique increasing triangular map that
transforms one density to the other. Consequently, the constructed NFs should be universal,
i.e., dense in the class of increasing triangular maps, in order to approximate those density
transformations with arbitrary precision. But it is observed in Jaini et al. [23] that, despite
many NFs being triangular, they are not universal. To remedy this, most have reverted to
the empirical approach of stacking several transformations together, thereby increasing the
expressiveness of the model. Alternatively, there are NFs that use genuinely universal trans-
formations. Many such methods employ coupling functions based on polynomials, e.g.,
sum-of-squares (SOS) polynomials in Jaini et al. [23], cubic splines in Durkan et al. [11] or
rational quadratic splines in Durkan et al. [12]. Here, we employ another class of polynomi-
als called Bernstein-type polynomials to construct a universal triangular flow which hence-
forth is called Bernstein-type NF. Our universality proof is a consequence of [5], and unlike
the proofs in the previous literature, is constructive, and hence, yields analytic expressions
for approximations of known density transformations; see Section 2.4.

On the other hand, noise is omnipresent in data. Sample data can be subjected to pertur-
bations due to experimental uncertainty (instrumentation errors or added random noise). It
is well-known that nonlinear systems amplify these initial errors and produce drastically dif-
ferent outcomes even for small changes in the input data; see Higham [19], Lanckriet et al.
[28], Taylor [37]. In terms of (deep) classifiers, robustness is often studied in the context of
adversarial attacks, where the performance of the classifier should be robust against specific
perturbations of the inputs. Similarly, for generative models, this translates to robustly mod-
eling a distribution in the presence of perturbed data. Recently, [8] analyzed the robustness
of deep generative models against random perturbations of the inputs, where they designed a
VAE variant that is robust to random perturbations. Similarly, [27] also proposed a heuristic-
based method to make deep generative models robust against perturbations of the inputs.

As any other nonlinear model, NFs are also susceptible of numerical instabilities. Unless
robust, trained NFs may amplify initial errors, and demonstrate out-of-distribution sample
generation and poor generalization to unseen data. For instance, consider an NF modeling
measured or generated velocities (energies) of molecular movements; see [26]. Similarly,
consider a scenario where we intend to flag certain samples of a random process as out-of-
distribution data. If the training data is susceptible to noise, the measured log-likelihoods of
the test samples may significantly deviate from the true values unless the NF model is robust.

Therefore, it is imperative that the robustness of NFs is investigated during their con-
struction and implementation. Despite this obvious importance, robustness of NFs has not
been theoretically or even experimentally studied in the previous literature, unlike other deep
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generative models. One of the key motivations behind this work is to fill this void. Accord-
ingly, we show that Bernstein-type polynomials are ideal candidates for the construction of
NFs that are not only universal but also robust. Robustness of Bernstein-type NFs follow
from the optimal stability of the Bernstein basis [15, 16]; see also, Section 2.5.

Recently, Bernstein polynomials have also been used in conditional transformation mod-
els to due to their versatility; see for example, Hothorn et al. [22], Hothorn and Zeileis [21],
[3] and references therein. In contrast, here, we introduce a novel approach of building NFs
using Bernstein polynomials.

In summary, apart from collecting, organizing and summarising in a coherent fashion
the appropriate theoretical results which were scattered around the mathematical literature,
we 1) deduce, in Theorem 3, the universality of Bernstein flows, 2) state and prove, in The-
orem 2, a strict monotonicity result of Bernstein polynomials which has been mentioned
without proof and used in Farouki [14], 3) prove, in Theorem 1, that, in any NF, it is enough
to consider compactly supported targets (in the previous literature was implicitly assumed
without proper justification), 4) theoretically establish that, compared to other polynomial-
based flow models, Bernstein-type NFs demonstrate superior robustness to perturbations in
data. To our knowledge, ours is the first work to discuss robustness in NFs, 5) discuss a the-
oretical bound for the rate of convergence of Bernstein-type NFs, which, to our knowledge,
has not been discussed before in the context of NFs, and 6) propose a practical framework to
construct normalizing flows using Bernstein-type polynomials and empirically demonstrate
that theoretically discussed properties hold in practice.

Moreover, compared to previous NF models, our method has several additional advan-
tages such as suitability for approximating compactly supported target densities; see Sec-
tion 2.2, the ability to increase the expressiveness by increasing the polynomial degree at no
cost to the training stability; see Section 2.2, and being able to invert easily and accurately
due to the availability of efficient root finding algorithms; see Section 2.3.

2 Theoretical foundations of the Bernstein-type NF
Here, we elaborate on the desirable properties of Berstein-type polynomials and their im-
plication to our NF model. The mathematical results taken directly from existing literature
are stated as facts with appropriate references. The proofs of Theorems 1, 2 and 3, appear
in Appendix 2. Also, in each subsection, we point out the advantages of our model (over
existing models) based on the properties discussed. We point the reader to Appendix 1.1 for
a brief discussion on triangular maps and other preliminaries.

2.1 Bernstein-type polynomials

The degree n Bernstein polynomials,
(n

k

)
xk(1−x)n−k, 0 ≤ k ≤ n, n ∈N, were first introduced

by Bernstein in his constructive proof of the Weierstrass theorem in Bernstein [5]. In fact,
given a continuous function f : [0,1] → R, its degree n Bernstein approximation, Bn( f ) :
[0,1]→ R, given by

Bn( f )(x) =
n

∑
k=0

f
(

k
n

)(
n
k

)
xk(1− x)n−k, (1)

is such that Bn( f )→ f uniformly in [0,1] as n → ∞. Moreover, Bernstein polynomials form
a basis for degree n polynomials on [0,1]. More generally, polynomials of Bernstein-type
can be defined as follows.
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Definition 1. A degree n polynomial of Bernstein-type is a polynomial of the form

Bn(x) =
n

∑
k=0

αk

(
n
k

)
xk(1− x)n−k, x ∈ [0,1] , (2)

where αk, 0 ≤ k ≤ n are some real constants.

Remark 1. Polynomials of Bernstein-type on an arbitrary closed interval [a,b] are defined
by composing Bn with the linear map that sends [a,b] to [0,1], La,b(x) = x−a

b−a . So, Bernstein-
type polynomials on [a,b] take the form Bn ◦La,b. Hereafter, we denote degree n Bernstein-
type polynomials by Bn regardless of the domain.

As we shall see below, one can control various properties of Bernstein-type polynomials
like strict monotonicity, range and universality by specifying conditions on the coefficients,
and the error of approximation depends on the degree of the polynomials used.

2.2 Easier control of the range and suitability for compact targets

The supports of distributions of samples used when training and applying NFs are not fixed.
So, it is important to be able to easily control the range of the coupling functions. In the case
of Bernstein-type polynomials, Bns, this is very straightforward. Note that if Bn is defined on
[a,b], then Bn(a) = α0 and Bn(b) = αn. Therefore, one can fix the values of a Bernstein-type
polynomial at the end points of [a,b] by fixing α0 and αn. So, if Bn is increasing (which
will be the case in our model; see Section 2.3), then its range is [α0,αn]. This translates to a
significant advantage when training for compactly supported targets because we can achieve
any desired range [c,d] (the support of the target) by fixing α0 = c and αn = d and letting
only αk, 0 < k < n vary. So, Bns are ideal for modeling compactly supported targets. In fact,
in most other methods except splines in Durkan et al. [11, 12], either there is no obvious way
to control the range or the range is infinite. We present the following theorem to establish
that for the purpose of training, we can assume the target has compact support (up to a known
diffeomorphism).

Theorem 1. Let I j, j = 1,2,3 be measurable subsets of Rd . Suppose I1 is the support of the
target Px, I2 is the support of the prior Pz, F is the class of coupling functions with ranges
contained in I3 and h : I3 → I1 is a diffeomorphism. If Py is the distribution on I3 such that
h∗Py = Px, then

arg min f∈F KL(Px∥(h◦ f )∗Pz) = arg min f∈F KL(Py∥ f∗Pz). (3)

In the previous literature that uses transformations with compact range, this fact was im-
plicitly assumed without proper justification. As a consequence of the above theorem, our
coupling functions having finite ranges is not a restriction, and in any NF model, even if the
target density is not compactly supported, the learning procedure can be implemented by first
converting the target density to a density with a suitable compact support via a diffeomor-
phism, and then training on the transformed data. Since we deal with compactly supported
targets, in practice, we do not need to construct deep architectures (with a higher number of
layers), as we can increase the degree of the polynomials to get a better approximation. In
other polynomial based methods, a practical problem arises because the higher order polyno-
mials could predict extremely high values initially leading to unstable gradients (e.g., [23]).
In contrast, we can avoid that problem as the range of our transformations can be explicitly
controlled from the beginning by fixing α0 and αn .
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2.3 Strict monotonicity and efficient inversion
In triangular flows, the coupling maps are expected to be invertible. Since strict monotonoc-
ity implies invertibility, it is sufficient that the Bns we use are strictly monotone.

Theorem 2. Consider the Bernstein-type polynomial Bn in (2). Suppose α0 <α1 < · · ·<αn.
Then, Bn is strictly increasing on [0,1].

This result was mentioned as folklore without proof and used in Farouki [14]. On
the other hand, in Lindvall [29], the conclusion is stated with monotonicity and not strict
monotonicity (which is absolutely necessary for invertibility). Hence, we added a com-
plete proof of the statement in Appendix 2. According to this result, the strict monotonic-
ity of Bns depends entirely on the strict monotonicity of the coefficients αks. It is easy to
see that the assumption of strict monotonicity of the coefficients is not a further restric-
tion on the optimization problem. For example, if the required range is [c,d], we can take
αn−k = c+(d − c)(1+ v2

0 + · · ·+ v2
k)

−1 where vks are real valued. This converts the con-
strained problem of finding αks to an unconstrained one of finding vks. Alternatively, we can
take α0 = c and αk = |v1|+ · · ·+ |vk|, and after each iteration, linearly scale αks in such a
way that αn = d. After guaranteeing invertibility, we focus on computing the inverse, i.e., at
each iteration, given x we solve for z ∈ [0,1],

Bn(z) =
n

∑
k=0

αk

(
n
k

)
zk(1− z)n−k = x ⇐⇒

n

∑
k=0

(αk − x)
(

n
k

)
zk(1− z)n−k = 0 (4)

because Bernstein polynomials form a partition of unity on [0,1]. So, finding inverse images,
i.e., solving the former is equivalent to finding solutions to the latter. Due to our assumption
of increasing αks, Bn is increasing, and has at most one root on [0,1]. The condition (α0 −
x)(αn − x)< 0 (which can be easily checked) guarantees the existence of a unique solution,
and hence, the invertibility of the original transformation.

Due to the extensive use of Bernstein-type polynomials in computer-aided geometric de-
sign, there are several well-established efficient root finding algorithms at our disposal [36].
For example, the parabolic hull approximation method in Rajan et al. [34] is ideal for higher
degree polynomials with fewer roots (in our case, just one) and has cubic convergence for
simple roots (better than both the bijection method and Newton’s method). Further, because
of the numerical stability described in Section 2.5 below, the use of Bernstein-type polynomi-
als in our model minimizes the errors in such root solvers based on floating–point arithmetic.
Even though inverting splines are easier due to the availability of analytic expressions for
roots, compared to all other other NF models, we have more efficient and more numerically
stable algorithms that allow us to reduce the cost of numerical inversion in our setting.

2.4 Universality and the explicit rate of convergence
In order to guarantee universality of triangular flows, we need to use a class of coupling
functions that well-approximates increasing continuous functions. This is, in fact, the case
for Bns, and hence, we have the following theorem whose proof we postpone to Appendix 2.

Theorem 3. Bernstein-type normalizing flows are universal.

The basis of all the universality proofs of NFs in the existing literature is that the learnable
class of functions is dense in the class of increasing continuous functions. In contrast, the
argument we present here is constructive. As a result, we can write down sequences of
approximations for (known) transformations between densities explicitly; see Appendix 4.

Citation
Citation
{Farouki} 2000

Citation
Citation
{Lindvall} 2002

Citation
Citation
{Spencer} 1994

Citation
Citation
{Rajan, Klinkner, and Farouki} 1988



6 RAMASINGHE ET AL.: A ROBUST NF USING BERNSTEIN-TYPE POLYNOMIALS

In the case of cubic-spline NFs of Durkan et al. [11], it is known that for k = 1,2,3 and
4, when the transformation is k times continuously differentiable and the bin size is h, the
error is O(hk) [2, Chapter 2]. However, we are not aware of any other instance where an
error bound is available. Fortunately for us, the error of approximation of a function f by its
Bernstein polynomials has been extensively studied. We recall from Voronovskaya [38] the
following error bound: for f : [0,1]→ R twice continuously differentiable

Bn( f )− f =
x(1− x)

2n
f ′′(x)+o(n−1) (5)

and this holds for an arbitrary interval [a,b] with x(1− x) replaced by (x−a)(b− x). Since
the error estimate is given in terms of the degree of the polynomials used, we can improve
the optimality of our NF by avoiding unnecessarily high degree polynomials. This allows
us to keep the number of trainable parameters under control in our NF model. It can be
shown that the error O(n−1) above does not necessarily improve when SOS polynomials
are used instead; see Appendix 3. In our NF, at each step, the estimation is done using
a univariate polynomial, and hence, the overall convergence rate is, in fact, the minimal
univariate convergence rate of O(n−1) (equivalently, the error upper bound is the maximum
of univariate upper bounds), and in general, cannot be improved further regardless of how
regular the density transformation is. However, our experiments (in Section 4.3) show that
our model on average has a significantly smaller error than the given theoretical upper-bound.

2.5 Robustness of Bernstein-type normalizing flows
In this section, we recall some known results in Farouki and Goodman [15], Farouki and
Rajan [16] about the optimal stability of the Bernstein basis. The two key ideas are that
smaller condition numbers lead to smaller numerical errors and that the Bernstein basis has
the optimal condition numbers compared to other polynomial bases.

To illustrate this, let p(x) be a polynomial on [a,b] of degree n expressed in terms of a
basis {φk}n

k=0, i.e.,

p(x) =
n

∑
k=0

ckφk(x), x ∈ [a,b]. (6)

Let ck be randomly perturbed, with perturbations δk where the relative error δk/ck ∈ (−ε,ε).
Then the total pointwise perturbation is

δ (x) =
n

∑
k=0

δkφk(x) =⇒ |δ (x)| ≤
n

∑
k=0

|δkφk(x)| ≤ ε

n

∑
k=0

|ckφk(x)| ≤ εCφ (p(x)) , (7)

where Cφ (p(x)) := ∑
n
k=0 |ckφk(x)| is the condition number for the total perturbation with re-

spect to the basis φk. It is clear that Cφ (p(x)) controls the magnitude of the total perturbation.
According to Farouki and Goodman [15], if φ = {φk}n

k=0 and ψ = {ψk}n
k=0 are non-

negative bases for polynomials of degree n on [a,b], and for all j, latter is a non-negative
linear combination of the former, that is, ψ j = ∑

n
k=0 M jkφk with M jk ≥ 0. Then, for any

polynomial p(x),
Cφ (p(x))≤Cψ(p(x)) . (8)

For 0 ≤ a < b, the Bernstein polynomials and the power monomials, {1,x,x2, . . . ,xn}, are
non-negative bases on [a,b]. It is true that the latter is a positive linear combination of the
former but not vice-versa; see Farouki and Goodman [15]. Therefore, Bernstein polynomial
basis has the lowest condition number out of the two. This means that the change in the value
of a polynomial caused by a perturbation of coefficients is always smaller in the Bernstein
basis than in the power basis. A more involved computation gives
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C̃φ (x0) =

(
m!

|p(m)(x0)|

n

∑
k=0

|ckφk(x0)|

)1/m

(9)

as the condition number that controls the computational error for a m−fold root x0 of p(x)
in [a,b]; see Farouki and Rajan [16]. There, it is proved that if C̃ψ(x0) and C̃φ (x0) denote
the condition numbers for finding roots of any polynomial on [0,1] in the power and the
Bernstein bases on [0,1], respectively, then C̃φ (x0) < C̃ψ(x0) for x0 ∈ (0,1] and C̃φ (0) =
C̃ψ(0). This means that the change in the value of a root of a polynomial caused by a
perturbation of coefficients is always smaller in the Bernstein basis than in the power basis.

In fact, a universal statement is true: Among all non-negative basis on a given interval,
the Bernstein polynomial basis is optimally stable in the sense that no other non-negative
basis gives smaller condition numbers for the values of polynomials (see [32, Theorem 2.3])
and no other basis expressible as non-negative combinations of the Bernstein basis gives
smaller condition numbers for the roots of polynomials (see [15, Section 5.3]).

In particular, Bns are systematically more stable than the polynomials in the power form
when determining roots (for example, when inverting) and evaluation (for example, when
finding image points). As a result, when polynomials are used to construct NFs (for exam-
ple, Q-NSF based on quadratic or cubic splines, SOS based on some of square polynomials
and our NF based on Bernstein-type polynomials, ours yields the most numerically stable
NF, i.e., it is theoretically impossible for them to be more robust. Our experiments in Sec-
tion 4.2, while confirming this, demonstrate that our method outperforms even the NFs that
are not based on polynomials.

3 Construction of the Bernstein-type normalizing flow

Figure 1: Overall Bernstein NF architecture with m+ 1 layers for d-dimensional distributions. The
ranges of transformations are within brackets and trainable coefficients are in orange boxes.

In this section, we describe the construction of normalizing flows using the theoretical
framework established in Section 2 for compactly supported targets. For this, we employ
a MADE style network [17]. Consider a d-dimensional source Pz(z) and a d-dimensional
target Px(x). Then, the element-wise mapping between the components x j and z j is approxi-
mated using a Bernstein-type polynomial as x j = B j

n(z j). We obtain the parameters of B j
n(z j)

using a neural network which is conditioned on z< j. This ensures a triangular mapping be-
tween the distributions. We fix α0 and αn to be constants, and thus, define the range of each
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transformation; see Section 2.2. Moreover, as per Theorem 2, αks need to be strictly increas-
ing for a transformation to be strictly increasing. However, when we convert this constrained
problem to an unconstrained one as proposed in Section 2.3, we obtain vks using the neural
network and then calculate αks as described.

For each B j
n, we employ a fully-connected neural net with three layers to obtain the pa-

rameters, except in the case of B0
n in which we directly optimize the parameters. Figure 1

illustrates a model architecture with m+1 layers and degree n polynomials for d-dimensional
distributions. Here, there are (n− 1)(m+ 1) variable coefficients altogether. We use maxi-
mum likelihood to train the model with a learning rate 0.01 with a decay factor of 10% per
50 iterations. All the weights are initialized randomly using a standard normal distribution.

4 Experiments
In this section, we summarise our empirical evaluations of the proposed model based on both
real-world and synthetic datasets and compare our results with other NF methods.

4.1 Modeling sample distributions

Table 1: Test log-likelihood comparison against the state-of-the-art on real-world datasets (higher
is better). Results for competing methods are extracted from Durkan et al. [12] where error bars
correspond to two standard deviations. Log-likelihoods are averaged over 5 trials for Bernstein.

MODEL POWER GAS HEPMASS MINIBOONE BSDS300

FFJORD 0.46±0.01 8.59±0.12 −14.92±0.08 −19.43±0.04 157.40±0.19
GLOW 0.42±0.01 12.24±0.03 −16.99±0.02 −10.55±0.45 156.95±0.28
MAF 0.45±0.01 12.35±0.02 −17.03±0.02 −10.92±0.46 156.95±0.28
NAF 0.62±0.01 11.96±0.33 −15.09±0.04 −8.86±0.15 157.73±0.04
BLOCK-NAF 0.61±0.01 12.06±0.09 −14.71±0.38 −8.95±0.07 157.36±0.03
RQ-NSF (AR) 0.66±0.01 13.09±0.02 −14.01±0.03 −9.22±0.48 157.31±0.28
Q-NSF (AR) 0.66±0.01 13.09±0.02 −14.01±0.03 −9.22±0.48 157.31±0.28
SOS 0.60±0.01 11.99±0.41 −15.15±0.10 −8.90±0.11 157.48±0.41
BERNSTEIN 0.63±0.01 12.81±0.01 −15.11±0.02 −8.93±0.08 157.13±0.11

Table 2: Test log-likelihood compari-
son against the state-of-the-art on image
datasets (higher is better). Results for com-
peting methods are extracted from Jaini
et al. [23]. Note that the first three models
use multi-scale convolutional architectures.

MODEL MNIST CIFAR10

REAL-NVP −1.06 −3.49
FFJORD −0.99 −3.40
GLOW −1.05 −3.35
MAF −1.89 −4.31
MADE −2.04 −5.67
SOS −1.81 −4.18
BERNSTEIN −1.54 −4.04

We conducted experiments on four datasets
from the UCI machine-learning repository and
BSDS300 dataset. Table 1 compares the obtained
test log-likelihood against recent flow-based mod-
els. As illustrated, our model achieves competitive
results on all of the five datasets. We observe that
our model consistently reported a lower standard
deviation which may be attributed to the robust-
ness of our model.

We also applied our method to two low-
dimensional image datasets, CIFAR10 & MNIST.
The results are reported in Table 2. Among the
methods that do not use multi-scale convolutional
architectures, we obtain the optimal results. In addition, we tested our model on several toy
datasets (shown in Figure 3). Note that these 2D datasets contain multiple modes, sharp
jumps and are not fully supported. So, the densities are not that obvious to learn. Despite the
difficulties, our model is able to estimate the given distributions in a satisfactory manner.
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Figure 2: Error bound vs average experimental
error.

Figure 3: Qualitative results for modeling the toy
distributions. From the top row: ground truth, pre-
diction, and predicted density.

4.2 Robustness
In order to experimentally verify that Bernstein-type NFs are more numerically stable than
other polynomial based NFs (as claimed in Section 2.5) we use a standard idea in the litera-
ture; see Taylor [37].

We add i.i.d. noise, sampled from a Uniform[0,10−2], to the five datasets included in
Table 1, and measure the change in the test log-likelihood as a fraction of the standard de-
viation (so that the change is in terms of standard deviations). In practice, values of the
experimented datasets are rescaled to a magnitude around unity. In signal processing, a good
SNR is considered to be above 40DB which is used in most real-world cases. Here, we have
chosen a noise order of 10−2 because our intention is to demonstrate that a SNR level below
or even around that range can affect the performance of NFs.

For a fair comparison, we train all the models from scratch on the noise-free train set us-
ing the codes provided by the authors, strictly following the instructions in the original works
to the best of our ability. Then, we test the models on the noise-free test set. We run the above
experiment 5 times to obtain the standard deviation σ and mean µ of the test log-likelihood.
Next, we add noise to the training set, retrain the model, and obtain the test log-likelihood y
on the noise-free test set. Finally, we obtain the metric |y−µ|

σ
which we report in Table 3.

Table 3: Test log-likelihood drop for random initial errors, relative to the original standard deviations.

MODEL POWER GAS HEPMASS MINIBOONE BSDS300

FFJORD 2.7 4.4 3.2 1.7 6.6
REAL-NVP 2.4 4.2 3.6 1.4 7.4
GLOW 2.1 4.1 2.3 0.8 6.9
NAF 2.2 3.7 3.3 0.7 6.6
MAF 2.4 4.4 3.9 0.8 7.1
MADE 2.1 4.6 3.6 2.4 8.1
RQ-NSF 2.3 5.4 4.1 0.9 7.8
SOS 2.1 1.7 1.9 1.6 6.1
BERNSTEIN 1.1 1.3 1.1 0.6 2.3

As expected, Bernstein NF demonstrate the lowest relative change in performance, im-
plying the robustness against random initial errors. In fact, other models are not robust: even
small initial errors consistently (at least in 4 out of 5 datasets) created changes larger than
1.645σ (corresponding to the two 5% tails of the distribution of errors) where σ is the origi-
nal standard deviation of error. In comparison, the change in our NF consistently (4 out of 5)
was well-within the acceptable range and is at most 1.3σ . In the remaining dataset, change
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in our model is 2.3σ while in all other models it’s more than 6σ .

4.3 Validation of the theoretical error upper-bound
The degree n(≥ 5) Bernstein approximation of f ∈C3[0,1] has an error upper-bound

En = n−1∥ρ
2 f (2)∥∞ +n−3/2∥ρ

3 f (3)∥∞ (10)

where ρ(x) =
√

x(1− x) [7, Chapter 4]. Now, we verify this using a Kumarswamy(2,5)
distribution as the prior and Uniform[0,1] as the target. Let f (x) = 1− (1− x2)5 and Bn

be the learned degree n Bernstein-type polynomial. The average error,
∫ 1

0 | f (x)−Bn(x)|dx,
obtained using the learned Bns and En satisfying

1.25n−1 +5n−3/2 < En < 1.25n−1 +5.5n−3/2 (11)

are plotted in Figure 2. It shows that the observed (average) error is smaller than this theo-
retical upper-bound. In the NF, we have used a single layer and increased the degree of the
polynomial from 10 to 100. The NF model was stable even when the degree 100 polynomial
was used. So, this experiment also demonstrates that our model is, in fact, stable even when
higher degree polynomials are used (as claimed in Section 2.2).

5 Conclusion
We propose a novel method to construct a universal autoregressive NFs with Bernstein-type
polynomials as the coupling functions, and is the first instance of robustness of NFs being
discussed. We show that Bernstein-type NFs posses advantages like true universality, robust-
ness against initial and round-off errors, efficient inversion, having an explicit convergence
rate, and better training stability for higher degree polynomials.
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