Robust normalizing flows using Bernstein-type polynomials

Sameera Ramasinghe, Kasun Fernando, Salman Khan, Nick Barnes

Motivation

- Generative modeling is modeling probability distributions of data set Examples: images, audio signals, observations from physical experiments.
- It is an important aspect in Data Science & Machine Learning.
- Why? Because it can be used
 - To generate synthetic samples.
 - To estimate the likelihood of a sample.
- Three key methods used:
- GANs
- VAEs
- Normalizing Flows
- GANs and VAEs have the following limitations:
 - Exact point-wise density estimation is not possible.
 - Mode and posterior collapse.
 - High sensitivity to the NN architecture.
- Normalizing Flows (NFs) were introduced by Rezende and Mohamed (2016) as a way to overcome these issues.

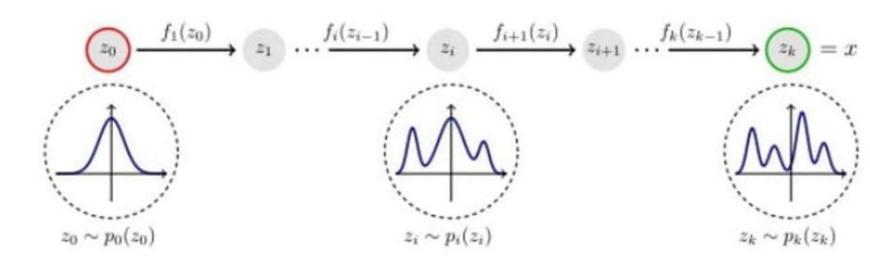


Figure: A 1-D normalizing flow; source: flowtorch.ai

- A normalizing flow is a series of invertible mappings that transform a simple distribution (known prior) to a complex distribution (unknown posterior).
- It is known that between any two probability distributions on \mathbb{R}^n there is a unique (up to null sets) increasing map whose Jacobian is an upper triangular matrix.
- When implementing as an NN, we have to make sure that
 - coupling functions are dense in the class of increasing triangular maps (universality).
 - the NF does not amplify initial errors (robustness).

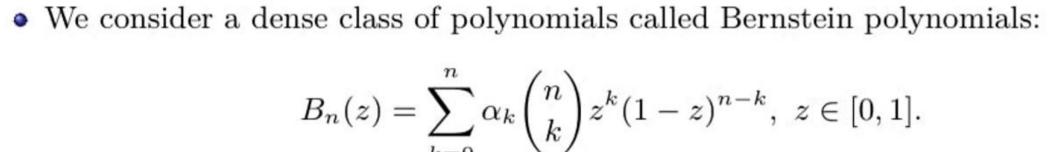
- Like any other nonlinear model, NFs are susceptible to numerical instabilities.
- In fact, this can be seen from one of our experiments:
 - We train known NF models from scratch on five widely used (noise-free) datasets.
 - Then, we test the models on the noise-free test set to obtain the standard deviation σ and mean μ of the test log-likelihood.
 - Finally, we add i.i.d. noise, sampled from a Uniform $[0, 10^{-2}]$, to those datasets, retrain the models, and obtain the test log-likelihood y on the noise-free test set.
 - The change in the test log-likelihood as a fraction of the standard deviation $\frac{y-\mu}{\sigma}$ is given in the following table.

Table: Test log-likelihood drop for random initial errors relative to σ .

Model	POWER	GAS	HEPMASS	MINIBOONE	BSDS300
REAL-NVP	2.4	4.2	3.6	1.4	7.4
GLOW	2.1	4.1	2.3	0.8	6.9
NAF	2.2	3.7	3.3	0.7	6.6
MAF	2.4	4.4	3.9	0.8	7.1
MADE	2.1	4.6	3.6	2.4	8.1
RQ-NSF	2.3	5.4	4.1	0.9	7.8
SOS	2.1	1.7	1.9	1.6	6.1

- These NFs are not robust!!!
- Small initial errors consistently created changes larger than 1.645σ . Errors in the 5% tails of the distribution of errors (unacceptably large).

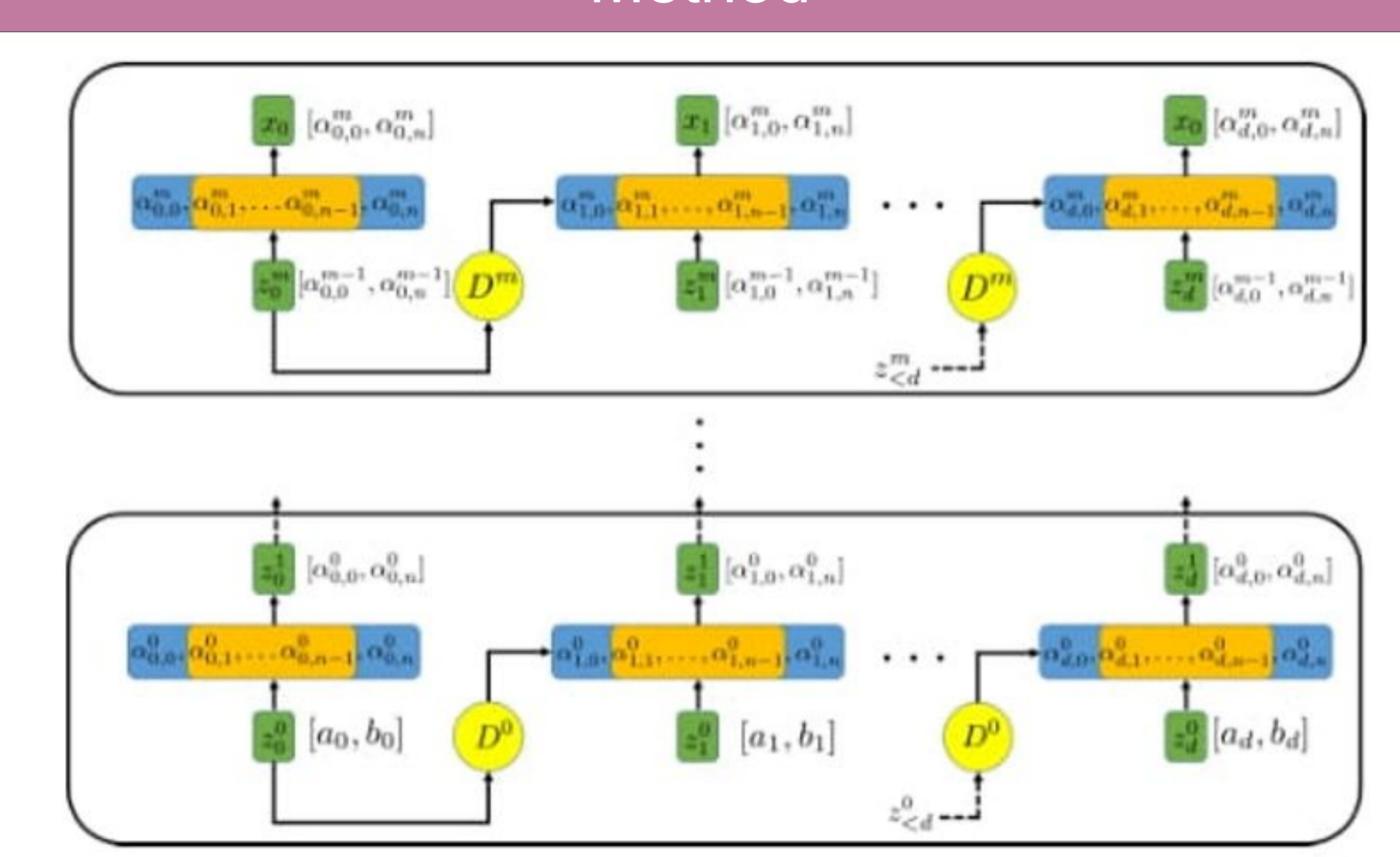
Method



- We use B_n s as the coupling functions in our normalizing flow the Bernstein NF.
- It is known that among "positive" polynomial bases the Bernstein basis, i.e., $\binom{n}{k}z^k(1-z)^{n-k}, k=0,\ldots,n$ is optimally stable.
- So, the change in the value of a polynomial caused by the perturbations of coefficients is always smaller in Bernstein basis than in bases such as the power basis.
- So, when polynomials are used to construct NFs:
 - Q-NSF based on quadratic or cubic splines
 - SOS based on some of square polynomials
 - Berntein NF based on Bernstein-type polynomials

ours yields the most numerically stable NF!!!

• Our experiments, while confirming this, demonstrate that our NF definitively outperforms even the NFs that are *not* based on polynomials.



- This is a MADE style network for d-dimensional sources $P_z(\mathbf{z})$ and targets $P_x(\mathbf{x})$.
- The element-wise mapping between the components x_j and z_j is approximated using a Bernstein-type polynomial as $x_j = B_n^j(z_j)$.
- We obtain the parameters of $B_n^j(z_j)$ using an NN which is conditioned on $z_{\leq j}$.
- Fixed coefficients are in blue (fixing the range of each transformation) and trainable coefficients are in orange boxes.
- For each B_n^j , we employ a fully-connected neural net with three layers to obtain the parameters, except in the case of B_n^0 in which we directly optimize the parameters.

Results

Table: Test log-likelihood drop for random initial errors, relative to σ .

Model	Power	GAS	HEPMASS	MINIBOONE	BSDS300
FFJORD	2.7	4.4	3.2	1.7	6.6
REAL-NVP	2.4	4.2	3.6	1.4	7.4
GLOW	2.1	4.1	2.3	0.8	6.9
NAF	2.2	3.7	3.3	0.7	6.6
MAF	2.4	4.4	3.9	0.8	7.1
MADE	2.1	4.6	3.6	2.4	8.1
RQ-NSF	2.3	5.4	4.1	0.9	7.8
SOS	2.1	1.7	1.9	1.6	6.1
BERNSTEIN	1.1	1.3	1.1	0.6	2.3

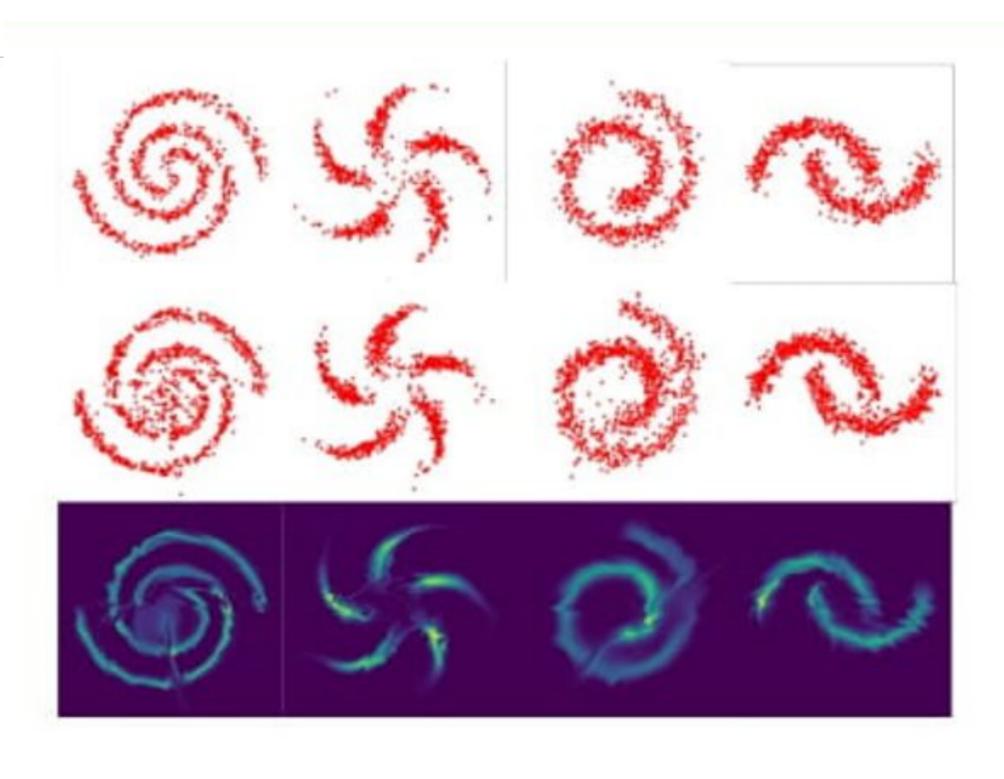
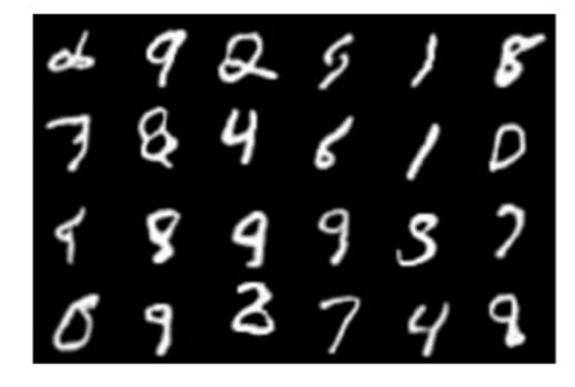


Figure: Qualitative results for modeling the toy distributions. From the top row: ground truth, prediction, and predicted density.



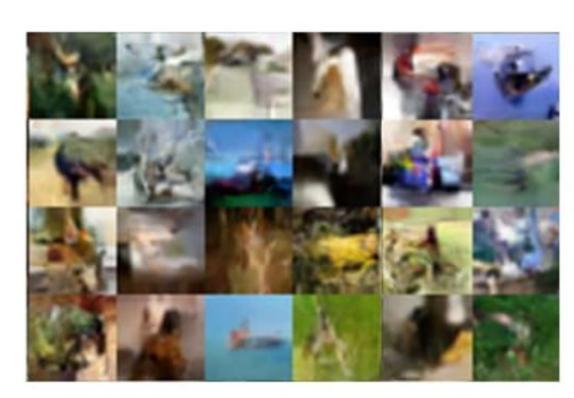


Figure: Samples generated by the Bernstein NF on MNIST and CIFAR10.