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Motivation

e (enerative modeling is modeling probability distributions of data set e Like any other nonlinear model, NFs are susceptible to numerical instabilities.

Examples: images, audio signals, observations from physical experiments. Q — . —— 8 ——— D . — =z : :
e In fact, this can be seen from one of our experiments:

@ We train known NF models from scratch on five widely used (noise-free) datasets.

e It is an important aspect in Data Science & Machine Learning.
:" \ :" W \ :" \ e Then, we test the models on the noise-free test set to obtain the standard deviation
\ X o and mean pu of the test log-likelihood.
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@ Why? Because it can be used

o To generate synthetic samples. Tt R T o s o Finally, we add i.i.d. noise, sampled from a Uniform[0,1072], to those datasets,
e To estimate the likelihood of a sample 20 ~ pol20) 2~ pil2i) 2k ~ Piel2i) retrain the models, and obtain the test log-likelihood y on the noise-free test set.
Figure: A 1-D normalizing flow; source: flowtorch.ai o The change in the test log-likelihood as a fraction of the standard deviation =t is
@ Three key methods used: given in the following table.
o GANs Table: Test log-likelihood drop for random initial errors relative to o.
& VAES @ A normalizing flow is a series of invertible mappings that transform a simple MODEL Bower CiAs HEpmaSs MiuiBoonE  BSDS300
o Normalizing Flows distribution (known prior) to a complex distribution (unknown posterior). REAL-NVP 2.4 1.0 3.6 1.4 4
GLOW 21 4.1 2.3 0.8 6.9
. a , . L - , . NAF 2.2 3.7 3.3 0.7 6.6
@ GANs and VAEs have the following limitations: e It is known that between any two probability distributions on R™ there is a unique MAF 2.4 4.4 3.9 0.8 7.1
: : : . o : : ; . . : MADE 2.1 4.6 3.6 2.4 8.1
o Exact point-wise density estimation is not possible. (up to null SetS) increasing map whose Jacobian is an upper triangular matrix. RQ-NSF 9.3 5.4 4.1 0.9 - 8
SOS 2.1 1.7 1.9 1.6 6.1

o Mode and posterior collapse.

@ When implementing as an NN, we have to make sure that

o High sensitivity to the NN architecture.
e coupling functions are dense in the class of increasing triangular maps (universality).

@ These NFs are not robust!!!

e Normalizing Flows (NFs) were introduced by Rezende and Mohamed (2016) as a o the NF does not amplify initial errors (robustness). e Small initial errors consistently created changes larger than 1.645 0.
way to overcome these issues. Errors in the 5% tails of the distribution of errors (unacceptably large).

Method

@ We consider a dense class of polynomials called Bernstein polynomials:

n .":)',‘n. "«'n’,... a7y o ”'t'_'.."
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e We use Bys as the coupling functions in our normalizing flow - the Bernstein NF. = 5 | i . o @ This is a MADE style network for d-dimensional sources P.(z) and targets P, (x).
P e | 0 . '

¢ The element-wise mapping between the components x; and z; is approximated

@ It is known that among “positive” polynomial bases the Bernstein basis, i.e., .
using a Bernstein-type polynomial as x; = B}, (z;).

(2) 2"(1—2)""* k=0,...,nis optimally stable.

@ So, the change in the value of a polynomial caused by the perturbations of coeffi- o We obtain the parameters of b, (ZJ) using an NN which is conditioned on =g

cients is always smaller in Bernstein basis than in bases such as the power basis. 7 @ Fixed coe

)

qicients are in blue (fixing the range of each transformation) and train-
able coefficients are in orange boxes.

@ So, when polynomials are used to construct NFs: o .0 |
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o Q-NSF based on quadratic or cubic splines o For each B, we employ a fully-connected neural net with three layers to obtain the

parameters, except in the case of B} in which we directly optimize the parameters.

e SOS based on some of square polynomials

o Berntein NF based on Bernstein-type polynomials

ours yields the most numerically stable NF!!!

@ Our experiments, while confirming this, demonstrate that our NF definitively
outperforms even the NFs that are not based on polynomials.

Table: Test log-likelihood drop for random initial errors, relative to o.

Figure: Qualitative results for modeling the toy distributions. From the top row: ground
truth, prediction, and predicted density.

MODEL POWER G AS HEPMASS MINIBOONE BSDS300

FFJORD 2.7 4.4 3.2 | 0 ¢ 6.6

REAL-NVP 2.4 4.2 3.6 1.4 7.4

GLOW Z.1 4.1 2.3 0.8 6.9

NAF 2.2 < B 4 3.3 8 By g 6.6

MAF 2.4 4.4 3.9 0.8 Tod

MADE 2.1 4.6 3.6 2.4 8.1

RQ-NSF 2.3 5.4 4.1 0.9 7.8

SOS 2.1 1.7 1.9 1.6 6.1 Figure: Samples generated by the Bernstein NF on MNIST and CIFARI10.
BERNSTEIN 1.1 1.3 1.1 0.6 2.3




