
Appendix

1 Preliminaries
In this section, we describe the general set up of triangular normalizing flow models.

1.1 Normalizing flows and triangular maps

NFs learn an invertible mapping between a prior and a more complex distribution (the target)
in the same dimension. Typically, the prior is chosen to be a Gaussian with identity covari-
ance or uniform on the unit cube, and the target is the one we intend to learn. Below, we
present a summary of related ideas and refer the readers to Jaini et al. [5] and Kobyzev et al.
[6] for a comprehensive discussion.

More formally, let z and x be sampled data from the prior with density Pz and the tar-
get distribution with density Px, respectively. Then, NFs learn a transformation f such that
f (z) = x which is differentiable and invertible with a differentiable inverse. Such transfor-
mations are called diffeomorphisms and they allow the estimation of the probability density
Px(x) via the change of variables formula Px(x) = Pz( f−1x)|J f ( f−1x)|−1 where J f is the
Jacobian determinant of f .

Given an independent and identically distributed (i.i.d.) sample {x1, . . . ,xn} with law Px,
learning the target density Px and the transformation f (within an expressive function class
F) is done simultaneously via minimizing the Kullback-Leibler (KL) divergence between Px
and the pushforward of Pz under f denoted by f∗Pz,

min
f∈F

KL(Px∥ f∗Pz) =−max
f∈F

∫
log

Pz( f−1x)
|J f ( f−1x)| · Px(x)dx. (1)

Density estimation using (1) requires efficient calculation of the Jacobian as well as f−1.
Both can be achieved via constraining f to be an increasing triangular map. That is, taking
Px(x) to be a multivariate distribution where x = (x1,x2, . . . ,xd), and the prior Pz(z) where
z = (z1,z2, . . .zd), the components of x are expressed as x j = f j(z1,z2, . . . ,z j) for suitably de-
fined transformations f j, j = 1,2, . . . ,d where f j is increasing with respect to z j. From now
on, we denote (z1,z2, . . . ,z j) by z< j+1. In this case, the Jacobian determinant is the product
∏

d
j=1 ∂z j f j. Also, because f j is increasing in z j, inversion can be done recursively starting

from f−1
1 .

2 Proofs
Proof of Theorem 1. To illustrate the relevance of the theorem to our setting, we write down
the details of the proof assuming that the learnable class F is Bernstein-type polynomials.
The same proof is true for any class of functions.

Take I j = [a j,b j] for j = 1,2,3 with a j < b j with the possibility that a1 =−∞ or b1 = ∞

whence the interval is understood to be open on the infinite end and the target may have
non-compact support. Let Bn : I2 → I3 be the learnable Bernstein-type polynomial with co-
effecients {α j}n

j=0. Let h : I3 → I1 be a fixed invertible transformation so that h−1 transforms
the target density Px to Py supported on I3, i.e., h∗Py = Px, and

Px(x) =
Py(h−1x)
|Jh(h−1x)| . (2)
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Fix α0 = a3, αn = b3 and let I = {(α1, . . . ,αn−1) |a3 < α1 < · · · < αn−1 < b3}. Then the
optimization problem is

min
I

KL(Px∥(h◦Bn)∗Pz) (3)

=−max
I

∫
log

Pz(B−1
n (h−1x))

|Jh◦Bn(B
−1
n (h−1x))|

· Px(x)dx (4)

=−max
I

∫
log

Pz(B−1
n (h−1x))

|Jh(h−1x)JBn(B
−1
n (h−1x))|

· Px(x)dx (5)

=−max
I

{∫
log

Pz(B−1
n (h−1x))

|JBn(B
−1
n (h−1x))|

· Px(x)dx+
∫

log |Jh(h−1x)| · Px(x)dx.
}

(6)

=−max
I

{∫
log

Pz(B−1
n (h−1x))

|JBn(B
−1
n (h−1x))|

· Py(h−1x)
|Jh(h−1x)| dx

}
+
∫

log |Jh(h−1x)| · Py(h−1x)
|Jh(h−1x)|dx.

(7)

=−max
I

{∫
log

Pz(B−1
n (y))

|JBn(B
−1
n (y))|

· Py(y)dy
}
+
∫

log |Jh(y)| · Py(y)dx. (8)

=min
I

KL(Py∥(Bn)∗Pz)+
∫

log |Jh(y)| · Py(y)dx (9)

Note that the second integral in (6) can be taken outside the max because it is independent
of Bn, and hence, it becomes a constant that is irrelevant for the optimization. From (9), it
follows that the minimum of KL(Px∥(h◦Bn)∗Pz) is achieved if and only if the minimum of
KL(Py∥(Bn)∗Pz) is achieved. Hence,

arg minI KL(Px∥(h◦Bn)∗Pz) = arg minI KL(Py∥(Bn)∗Pz) (10)

as required. It is easy to see that this argument remains unchanged when Bn is replaced by f
and I is replaced by f ∈ F.

Proof of Theorem 2. There is a probabilistic interpretation of Bernstein polynomials that
makes the analysis easier. Let Zx

i , 0 ≤ i ≤ n be i.i.d. Bernoulli(x) random variables. Then

Bn(x) = E

(
f

(
n

∑
i=0

Zx
i /n

))
. (11)

See, for example, Chapter 2 of Bustamante [3]. We will use this definition in the proof.
Let f : [0,1]→R be a strictly increasing continuous function such that f (k/n) = αk. Let

s < t and let Zx
i , 0 ≤ i ≤ n and be a sequence of iid Bernoulli(x) for x = s, t, defined on the

same probability space such that Zs
i ≤ Zt

i via monotone coupling. That is, let Zs
i = 1U≤s and

Zt
i = 1U≤t where U is a uniform random variables on [0,1] and couple them as follows.

P((Zs
i ,Z

t
i ) = ( j,k)) j,k∈{0,1} =

(
1− t t − s

0 s

)
(12)

and P(Zs
i > Zt

i ) = P(Zs
i = 1,Zt

i = 0) = 0. So, Zt
i ≥ Zs

i as required.
Then

f

(
n

∑
i=0

Zs
i /n

)
≤ f

(
n

∑
i=0

Zt
i/n

)
. (13)
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Consequently,

E

(
f

(
n

∑
i=0

Zs
i /n

))
≤ E

(
f

(
n

∑
i=0

Zt
i/n

))
. (14)

Due to (11), this is equivalent to Bn(s)≤ Bn(t).
If (14) is not strict, then f (∑n

i=0 Zt
i/n) = f (∑n

i=0 Zs
i /n) almost surely, and therefore,

∑
n
i=0 Zt

i =∑
n
i=0 Zs

i almost surely. But this is impossible due to monotone coupling. Therefore,
by contradiction, (14) is strict as required.

Proof of Theorem 3. Recall From Bernstein [2] that Bns are uniformly dense in the space
of continuous function on [0,1] because Bn( f )→ f uniformly. By rescaling, this is true on
any interval [a,b]. Moreover, by construction, whenever f is increasing, Bn( f ) is increasing.
So, it is automatic that increasing Bernstein polynomials on [a,b] are uniformly dense in the
space of increasing continuous functions on [a,b]. Finally, to show true universality, we have
to show that any increasing continuous function f : R→ R is well-approximated by Bns.

Given f : R → R continuous and increasing, choose two positive sequences {Mn} and
{εn} such that Mn → ∞ and εn → 0. Let In = [−Mn,Mn]. Then, there exists a Bernstein
approximation of f , say qn, which is increasing on In (which can be monotonically extended
to R) such that

max
In

| f −qn| ≤ εn. (15)

Then the sequence of Bernstein approximations {qn} converges point-wise to f on R, and
this convergence is uniform on each compact interval.

Remark 1. We can write down a sequence qn explicitly when f is regular. For example,
when f is C3 with bounded derivatives and Mn = logn, choosing the degree of qn to be n is
sufficient because it follows from the error estimate in Section 4.3 that εn ∼ (logn)/n works.
That is, choose qn to be the degree n Bernstein approximation of f on [−Mn,Mn].

Remark 2. Note that this result is not a restatement of the original result in [2]. The lat-
ter is about Bernstein-type polynomials being uniformly dense in the space of continuous
functions on a compact interval. It uses the fact that such functions have a maximum. For
the universality of NFs, we need that given an increasing continuous function on the real
line (which is noncompact and hence, no guarantee of a maximum) there is a sequence of
Bernstein-type polynomials that converge (at least, pointwise) to it.

3 Universality and the explicit rate of convergence
The basis of all the universality proofs of NFs in the existing literature is that the learnable
class of functions is dense in the class of increasing continuous functions. In contrast, the
argument we present here is constructive. As a result, we can write down sequences of
approximations for (known) transformations between densities; see Section 4.

In the case of cubic-spline NFs of Durkan et al. [4], it is known that for k = 1,2,3 and
4, when the transformation is k times continuously differentiable and the bin size is h, the
error is O(hk) [1, Chapter 2]. However, we are not aware of any other instance where an
error bound is available. Fortunately for us, the error of approximation of a function f by its
Bernstein polynomials has been extensively studied. We recall from Voronovskaya [9] the
following error bound: for f : [0,1]→ R twice continuously differentiable

Bn( f )− f =
x(1− x)

2n
f ′′(x)+o(n−1). (16)
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and this holds for an arbitrary interval [a,b] with x(1− x) replaced by (x−a)(b− x).
Since the error estimate is given in terms of the degree of the polynomials used, we can

improve the optimality of our NF by avoiding unnecessarily high degree polynomials. This
allows us to keep the number of trainable parameters under control in our NF model. The
following example shows that the error O(n−1) above does not necessarily improve when
SOS polynomials are used instead.

Example 1. Uniform[0,1] to the Normal(0,1) : There is bounded {ck}k≥0 ⊂ R+ such that

f (z) = Erf−1(2z−1) =
∞

∑
k=0

√
2πk+ 1

2 ck

2k+1

(
z− 1

2

)2k+1

; (17)

see Jaini et al. [5]. This is the power series expansion of f at z = 1/2, and hence, it is unique.
The SOS approximation of f (the series above truncated at k = n) is only O((2n+1)−1) =
O(n−1) accurate on compact sub-intervals of (0,1). This is precisely the accuracy one would
expect from the degree 2n+1 Bernstein approximation on any compact subinterval of (0,1).

In our NF, at each step, the estimation is done using a univariate polynomial, and hence,
the overall convergence rate is, in fact, the minimal univariate convergence rate of O(n−1)
(equivalently, the error upper bound is the maximum of univariate upper bounds), and in
general, cannot be improved further regardless of how regular the density transformation is.
However, our experiments show that our model on average has a significantly smaller error
than the given theoretical upper-bound.

4 Examples of Bernstein-type approximations
In this section, we illustrate how to use Bernstein-type polynomials to approximate diffeo-
morphisms between densities. We restrict our attention to densities on R. Suppose F and
G are the distribution functions of the two probability densities Pz and Px on R. Then the
increasing rearrangement f = G−1 ◦F is the unique increasing transformation that pushes
forward Pz to Px, and this generalizes to higher dimensions [8, Chapter 1]. Now, we can
explicitly write down their degree−n Bernstein-type approximations, Bn( f ) along with con-
vergence rates.

Example 2. Uniform[0,1] to a continuous and non-zero density P on [0,1] : Note that G(x)=∫ x
0 P(s)ds, x ∈ [0,1] is strictly increasing and hence, invertible on [0,1]. So, f (x) = G−1(x),

and G−1 is once continuously differentiable. Then

Bn( f )(x) =
n

∑
k=0

G−1
(

k
n

)(
n
k

)
xk(1− x)n−k. (18)

and ∥Bn( f )− f∥∞ = O(n−1/2).

Example 3. Kumaraswamy(α,β ) to Uniform[0,1] : Here, α,β > 0 and for x∈ [0,1], F(x)=
1− (1− xα)β [7] and G(x) = x. Therefore, f (x) = F(x). Then

Bn( f )(x) =
n

∑
k=0

F
(

k
n

)(
n
k

)
xk(1− x)n−k. (19)

When α,β ≥ 1, ∥Bn( f )− f∥= O(n−1).
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5 Hyper-parameters and training details
For optimization, we used the Adam optimizer with parameters β1 = 0.9, β1 = 0.999, ε =
1×10−8, where parameters refer to the usual notation. An initial learning rate of 0.01 was
used for updating the weights with a decay factor of 10% per 50 iterations. We initialized
all the trainable weights randomly from a standard normal distribution and used maximum
likelihood as the objective function for training. We observed that a single layer model with
100 degree polynomials performed well for the real-world data.

In contrast, for 2D toy distributions and and images we used higher number of layers (8)
with 15 degree polynomials in each layer. For all the experiments, we use a Kumaraswamy
distribution with parameters a = 2 and b = 5 as the base density. Using a standard normal
distribution after converting it to a density on [0,1] using a nonlinear transformation, e.g.,
1+tanh(z)

2 , also yielded similar results.

6 Training stability for higher degree polynomials
Typically, polynomial-based models such as SOS yield training instability as their target
ranges are not compact. This is because higher degree approximations could increase the
range of outputs without bound, and in turn cause gradients to explode while training. As
a solution, they opt to use a higher number of layers with lower degree polynomials. In
contrast, our model can entertain higher degree approximations without any instability which
allows more design choices. Figure 1 demonstrates this behavior experimentally.
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Figure 1: Test log-likelihood against the number of degrees used for the Bernstein approxi-
mation in a single layer model on POWER and GAS datasets. Slight dip in the performance
for degrees 100+ but shows no training instability.

According to Figure 1, the model hits a peak in performance at a certain degree and
shows a slight drop in performance at higher degrees. Nevertheless, the model does not
exhibit unstable behavior at higher degrees as opposed to SOS-flows – an indication of the
superior training stability of our model. This further illustrates that our model provides the
option to design shallow models by increasing the number of degrees in the polynomials
instead of deeper models with a higher number of layers.

7 Ablation study
We compare the performance of different variants of our model against a simple task in
order to better understand the design choices. For this, we use a standard normal as the
base distribution, and a mixture of five Gaussians with means = (−5,−2,0,2,5), variances
= (1.5,2,1,2,1), and weights 0.2 each, as the target. Figure 2 depicts the results.
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Clearly, we were able to increase the expressiveness of the transformation by increasing
the degree of the polynomials, as well as the number of layers. However, it is also visible that
using an unnecessarily higher degree over-parametrizes the model, and hence, deteriorate the
output. As discussed in the main article and in Section 6, we are able to use polynomials
with degree as high as 100 in this experiment and others with no cost to the training stability
because the training is done for a compactly supported target.

We also examine how the initial base distribution affects the performance. We use a mix-
ture of seven Gaussians with means = (−7,−5,−2,0,2,5,7), variances = (1,1,2,2,2,1,1),
and weights = (0.8,0.2,0.2,0.6,0.2,0.2,0.8), as the target. We used a model with a 100-
degree polynomial and a single layer for this experiment. Figure 3 illustrates the results.
Although all priors capture the multimodes, when Uniform[0,1] is used the model was not
able to predict that the density is almost zero for large negative values.

Figure 2: Ablation study with different varients of our model. D and L denotes the degree of the used
polynomials and the number of layers, respectively. Corresponding transformation functions are also
shown below the predicted densities.

Figure 3: Approximation of the target density starting from various initial densities (the initial distri-
butions are noted below the densities).
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8 Experiments with two-dimensional image datasets
In Section 4.2, we reported the results of the experiments we ran on two low-dimensional im-
age datasets: CIFAR10 and MNIST. The samples generated from the experiment are shown
Figure 4. We recall that we manage to obtain the optimal results among the methods that do
not use multi-scale convolutional architectures.

(a) MNIST (b) CIFAR10

Figure 4: Generated samples on MNIST and CIFAR10.
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