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Abstract

Although deep generative models have gained a lot of attention, most of the existing
works are designed for unimodal generation. In this paper, we explore a new method
for unconditional image-text pair generation. We design Multimodal Cross-Quantization
VAE (MXQ-VAE), a novel vector quantizer for joint image-text representations, with
which we discover that a joint image-text representation space is effective for semantically
consistent image-text pair generation. To learn a multimodal semantic correlation in a
quantized space, we combine VQ-VAE with a Transformer encoder and apply an input
masking strategy. Specifically, MXQ-VAE accepts a masked image-text pair as input and
learns a quantized joint representation space, so that the input can be converted to a unified
code sequence, then we perform unconditional image-text pair generation with the code
sequence. Extensive experiments show the correlation between the quantized joint space
and the multimodal generation capability on synthetic and real-world datasets. In addition,
we demonstrate the superiority of our approach in these two aspects over several baselines.
The source code is publicly available at: https://github.com/ttumyche/MXQ-VAE.

1 Introduction
Deep generative models focus mainly on unimodal generation, either unconditional (GAN [8],
VAE [11], GPT [1]) or conditional (VQGAN [6], DALL-E [20]). Despite these influential
works, studies on multimodal generation are still uncharted. One previous work [22] proposed
generating image and text at the same time with a GAN-based approach. However, the core
idea was to treat the text as an image, where the model generates two images, one for the
image and another for the text. Thus, this process must undergo the OCR process [24].

In this paper, we design Multimodal Cross-Quantization VAE (MXQ-VAE), a novel vector
quantizer that learns image-text representations to jointly generate image-text pairs without
any conditional input and post-processing (e.g., OCR), with which we discover that a joint
representation space is effective for semantically consistent image-text pair generation.
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To improve a multimodal semantic correlation in a quantized space, we combine VQ-VAE
[16] with a Transformer encoder [26] and further apply an input masking. MXQ-VAE learns to
discreteize masked image-text pairs into a quantized joint representation space and reconstruct
them. Specifically, the Transformer encoder learns joint representations by performing a
multi-head attention across the input, thereby can capture the semantic correlation between
image and text. The input masking further enhances the correlation by making the masked
part refer to the other modality to reconstruct the original input. Thus, we can convert the
input to a unified code sequence, then train Autoregressive Transformer [18] to model a joint
distribution over the sequence, allowing semantically consistent image-text pair generation.

We evaluate MXQ-VAE on one synthetic text-augmented MNIST, called Caption MNIST
and three public benchmarks: Oxford Flower-102 [15], CUB-200-2011 [27], and COCO [13].
We observe that MXQ-VAE generates semantically consistent image-text pairs better than
several baselines. Specifically, our approach achieves the highest average scores of 99.2% on
Caption MNIST, outperforming the second highest baseline by + 4.7% and also improves the
performance by + 0.8% on Flower, + 5.3% on CUB and + 2.3% on COCO.

In addition, to study the effectiveness of the quantized joint space for generating semanti-
cally consistent image-text pairs, we construct a corrupted dataset, called Degree dataset, by
gradually adjusting the degree of alignment between image and text. The experimental result
demonstrates that our approach can uphold the semantic correlation between image and text,
while baselines fail. Furthermore, we show that this result leads to semantically consistent
image-text pair generation.

Contributions of this paper can be summarized as follows:
• Unconditional Image-Text Pair Generation: We propose for the first time a novel

vector quantization method, MXQ-VAE, that learns the quantized joint representation
space for unconditional image-text pair generation.

• Semantic Consistency of the Generated Samples: Our experimental results reveal that
MXQ-VAE generates a semantically consistent image-text pairs on multiple benchmark
datasets, including Caption MNIST, Oxford Flower-102, CUB-200-2011, and COCO
against several baselines.

• Multimodal Semantic Correlation: Additionally, the experimental results on the
Degree dataset demonstrate that MXQ-VAE learns the meaningful semantic correlation
between image and text in the quantized joint space. Furthermore, it turns out that the
quantized joint space leads to semantically consistent image-text pair generation.

2 Related works
Generative Models Most generative models mainly focus on unimodal generation. VAE
[11], GAN [8], and GPT [1] generate image or text without any conditional input. Recently,
these studies have been prominent approaches for text-conditional image [5, 20] and image-
conditional text generation [9, 12]. With these model variants, unimodal generation has been
rapidly improved. However, studies on multimodal generation are still unexplored. Joint GAN
[22] proposes unconditional image-text generation, but this model generates two images, one
for the image and another for the text, thus it must undergo the OCR process [24]. Similarly,
MMVAE [21] generates two images with a shared space on MNIST-SVHN [21]. However,
both images depict simple digits. They also experiment with an image-text pair dataset. It
generates text, but for the image, it retrieves the nearest-neighbor original image in the feature
space. In this paper, we use MMVAE with customized decoder for comparison.
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Vector Quantized Variational Autoencoder. VQ-VAE [16] is a representative model that
maps continuous input into discrete representations by adopting an encoder-decoder architec-
ture with a fixed size learnable codebook. In this paper, we aim to jointly generate image-text
pairs without any conditional input. To achieve this, our model requires a continuous or
discrete joint representation space, since image is inherently continuous and text is discrete.
While a continuous space is a predominant approach for joint representation learning, we
adopt a discrete space for the following reasons. First, powerful autoregressive generative
model [1] has been developed to model distributions over discrete variables. Next, the discrete
space does not suffer from several drawbacks common to the continuous space, such as poste-
rior collapse in VAE [11]. In addition, discrete variables have the advantage of being more
interpretable and space-efficient than continuous variables [2]. Consequently, we propose a
simple approach based on VQ-VAE, which learns a quantized joint representation space.
Joint Image-Text Representations. Following the success of Transformer [26] in NLP
tasks, there is a simultaneous explosion of Transformer-based models in joint representation
learning. Previous works (e.g. UNITER [3], Pixel-BERT [10], VLP [29]) utilize BERT [4], a
Transformer encoder-based model, to learn joint image-text representations. By leveraging
the bidirectional self-attention mechanism of BERT, both images and text can capture the
semantic correlation between them without requiring annotations that align image and text.

3 Multimodal Cross-Quantization VAE (MXQ-VAE)
Our goal is to generate semantically consistent image-text pairs simultaneously without any
conditional input. To achieve this, we learn a joint representation space by quantizing both
image and text into a discrete space based on VQ-VAE. As shown in Fig. 1, we adopt a
two-stage approach.

Figure 1: Unconditional Image-Text Pair Generation. In Stage 1, MXQ-VAE takes a masked
image-text pair as input, and learns a quantized joint representation space. Then, the input
is converted into a unified code sequence. In Stage 2, Autoregressive Transformer models a
joint distribution over the code sequence. At inference, MXQ-VAE decodes a sampled code
sequence to an image-text pair.

3.1 Stage 1: Learning a Quantized Joint Representation Space
MXQ-VAE learns to discretize image-text pair into a quantized joint representation space and
reconstructs them. It consists of three major parts: Encoders, Decoders, and MXQ. The MXQ
module contains the Transformer encoder and a codebook C = {em}M

m=1 of size M, where
em ∈ Rd . Each encoder and decoder is 2D CNN for image and 1D CNN for text. The effect
of other architectural choices is discussed in the experiments.

Input Masking Given an image-text pair, we first split the image I ∈ RH×W×3 into non-
overlapping patches of equal size and the text into tokens T = {t1, ..., tN} with WordPiece
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[28]. Then, we randomly mask the patches and the tokens with a probability p from a uniform
distribution without replacement. Each pixel in the masked patches is set as zero. We replace
the masked tokens with a special token [MASK]. This approach makes two modalities com-
plementary. To reconstruct the masked part, the model should not only refer to the unmasked
part of each modality (i.e., intra-modal), but also to the unmasked part of the other modality
(i.e., cross-modal). In this way, the model can learn the relationship between image and text.

Encoders A masked input image is encoded to a set of image feature map zimg ∈ Rh×w×d .
Similarly, a masked text input is encoded to ztxt ∈Rn×d , where both of them are downsampled
by a factor of f ; that is, h = H

f ,w = W
f , n = N

f .

MXQ The Transformer encoder takes the concatenation of zimg and ztxt as input, and
produces joint image-text representations z ∈ Rℓ×d , where ℓ = h×w+ n. The output is
discretized into the quantized joint space by performing the nearest-neighbor search in the
codebook C as given in Eq. (1) and produces a unified code sequence ẑ ∈ Rℓ×d . With this
simple approach, a discrete code can contain the correlated information of image and text.

ẑi = Quantize(zi) = em where m = argmin
j

∥zi − e j∥ (1)

Decoders We first apply a linear layer to the spatial dimension (i.e., ℓ) of ẑ to ensure that
the decoder takes the desired size as input and produces ẑimg and ẑtxt for image and text,
respectively. The decoder then reconstructs the original input from ẑimg and ẑtxt , yielding
reconstruction results, I′ ∈ RH×W×3 and T ′, respectively.

Our model is optimized using the following objective:

L = δ1 ∥I − I′∥2
2︸ ︷︷ ︸

image recon loss

−δ2 log p(T |ẑtxt)︸ ︷︷ ︸
text recon loss

+δ3 ∥sg[z]− ẑ∥2
2︸ ︷︷ ︸

codebook loss

+δ4 ∥sg[ẑ]− z∥2
2︸ ︷︷ ︸

commitment loss

(2)

where each loss term is weighted by δi and sg refers to a stop-gradient.

3.2 Stage 2: Unconditional Image-Text Pair Generation
We adopt the Autoregressive Transformer [18] architecture to model a joint distribution over
the sequence of unified code indices c = (c1,c2, ...,cℓ) from Stage 1. The probability of
each code index in the sequence is conditioned on all previously predicted code indices
c<n = (c1,c2, ...,cn−1) and the joint distribution of the sequence is obtained as the product
of conditional distributions: p(c) = ∏

ℓ
n=1 p(cn|c1,c2, ...,cn−1) = ∏

ℓ
n=1 p(cn|c<n). During

training, MXQ-VAE quantizes the input image-text pair into the unified code sequence, then
Autoregressive Transformer is trained to predict the next code index in the given sequence. At
inference, we sample a code sequence from Autogregressive Transformer via Top-k sampling
[7], then MXQ-VAE decodes the sampled code sequence to an image-text pair.

4 Experimental Settings

4.1 Datasets
Caption MNIST. Following [23], we build 600k synthetic image-text pairs. Each pair
contains several colors, digits, and positions. We have 4 colors (white, red, green, and
blue), 10 digits (0 to 9) and 5 positions (center, top left, top right, bottom left, and bottom
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right). According to the filled quadrant, we refer to each subset as Single and Quad1 to
Quad4. For example, Single pairs only have one colored digit at the center of the image and a
corresponding caption, whereas Quad3 pairs have colored digits in three quadrants, also with
a corresponding caption. See Fig. 2 for more details.
Oxford Flower-102 [15] (Flower) contains 8,189 flower images with 10 captions per image.
CUB-200-2011 [27] (CUB) consists of 11,788 bird images with 10 captions per image. We
use a bounding box to cut the background of the image and only use the content.
COCO [13] is a real-world dataset with about 120k images and 5 captions per image.
Degree datasets. To evaluate the semantic correlation between image and text in the quantized
joint space in Stage 1, we construct the Degree dataset by gradually adjusting the degree of
alignment between image and text. More specifically, for Caption MNIST, we replace the
color and digit in the caption with other random colors and digits. For instance, Quad3 can
have 4 degrees from perfectly paired (Degree 3) to completely unpaired (Degree 0). Refer to
Fig. 2 for more details. For Flower and CUB, variables besides color are difficult to control,
thus we only consider the number of unique colors in the caption and replace them with other
random colors. According to the number of unique colors in the caption, we refer it as Quad1
to Quad4. See Fig. 3 for more details.

Figure 2: Examples of Caption MNIST (Top) and the Quad3 Degree dataset (Bottom).

Figure 3: Examples of the Flower (Left) and CUB (Right) Quad2 Degree datasets.

4.2 Evaluation Metrics
4.2.1 Multimodal Semantic Correlation Evaluation

We evaluate the semantic correlation between image and text in the quantized joint space
by the text reconstruction accuracy on the Degree dataset. Since the quantized joint space
captures the semantically correlated parts of images and text, the model should identify the
corrupted parts in the Degree dataset and not reconstruct that part as is. For instance, in the
Caption MNIST Quad1 Degree dataset, the Degree 1 input text is “the green 0 is on the upper
right.” and the Degree 0 input text is “the white 1 is on the upper right.”. The input image
depicts the Degree 1 text in this case. If the reconstructed text is “the green 0 is on the upper
right.” for both Degree 1 and 0 input text, the text reconstruction accuracy will be 1 and 0 for
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each, as we only consider color and digit for calculating text reconstruction accuracy (only
color in cases of Flower and CUB). According to this, the desired accuracy, for instance,
would be 1, 0.67, 0.33, and 0 for each degree of the Quad3 Degree dataset.

4.2.2 Generated Image-Text Alignment Evaluation

We evaluate the semantic consistency of the generated image-text pairs with rule-based
semantic parser on Caption MNIST, label-based modified unigram precision [17] and sentence
similarity on Flower and CUB, and CLIP-based retrieval on COCO.
Rule-based Semantic Parser. Following [23], we extract a set of position, color and digit
of the generated text with the rule-based parser. With a color and digit classifier trained on
Caption MNIST images that achieved 100% and 99.5% accuracy respectively, we predict the
color and digit of the position that corresponds to the parsed text in the generated image and
measure whether both the predicted color and digit match the parsed text at that position.
Label-based Evaluations. For Flower and CUB, we measure the semantic consistency
between the generated caption and all original captions that belong to the same label as the
generated image. Specifically, we first train image classifiers using the original image and
achieve 99% and 93% accuracy for Flower and CUB, respectively. Then, we predict the label
of the generated image and collect all original captions from the same label. For the modified
unigram precision [17], we report the average score of the multiset intersection of words in
the original text and the generated text divided by the total number of words in the generated
text. For the sentence similarity, a pre-trained BERT [4] takes the generated text and the
original text from the same label, separately, and outputs a mean-pooled vector. Then, we
calculate the cosine similarity between them and report a Top-1, 5 and 10 averaged score.
CLIP-based Retreival. For COCO, we report the Precision@{1, 5, 10} to measure the
retrieval accuracy of CLIP [19] of the generated text from the 100 text candidates; that is, 1
positive from the generated text, 99 random negatives from the original text.

4.3 Baselines

MXQ-VAE w/o IM (Input Masking). The architecture is the same as MXQ-VAE, but
without input masking.
MXQ-VAE w/o TC (Text Compression). This replaces the 1D convolution-based text
encoder and decoder with the Transformer encoder. Note that the Transformer text encoder
outputs the same number of embeddings as the input, contrary to 1D convolutional layers
that compresses the input text gradually by each layer. This is why we name it w/o Text
Compression.
Unimodal Quantizer. In Stage 1, this baseline discretizes each modality separately. For
the image, it follows the original VQ-VAE. Since the text is originally discrete, we directly
use the word embeddings. In Stage 2, we concatenate the code sequence of image and text
embeddings as the input. Depending on which modality comes first in Stage 2 input, we refer
to it as I_TEmbd or TEmbd_I.
Only Sharing C. In Stage 1, this baseline only shares the codebook C without the Transformer
module that combines image and text together and the input masking. In Stage 2, depending
on which modality comes first, we refer to it as I&T or T&I.
The variants of Unimodal Quantizer and Only Sharing C also generate an image-text pair
without any conditional input, and the only difference is which modality comes first in Stage 2.
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4.4 Implementation Details

Stage 1. For Caption MNIST, the codebook C is 256× 128, the input size is 64× 64× 3
image and 64×128 word embedding. Each input is downsampled by a factor of f = 8. We
adopt 2 stacks of the Transformer encoder and apply an input masking ratio p = 0.3. We use a
batch size of 800 with a learning rate of 5×10−4. We set δ1, δ2 and δ3 to 1.0 and δ4 to 0.25.
Stage 2. We adopt GPT-2 [18] for an autoregressive generative model with 8 layers, 8
attention heads and 512 embedding dimensions. We adopt Top-k sampling [7] with k = 10.
For Caption MNIST, we use a batch size of 800 with a learning rate of 5e− 4. In all our
experiments, we use AdamW [14] with β1 = 0.9, β2 = 0.99 with cosine decay learning rate
scheduler and train the model using a NVIDIA RTX A6000.

5 Results and Discussion

5.1 Multimodal Semantic Correlation Results
We first study the effectiveness of MXQ-VAE in constructing multimodal semantic
correlation in the quantized joint space as described in Sec. 4.2.1. Tab. 1 shows the results.
On the Caption MNIST Degree dataset, we observe that Only Sharing C and MXQ-VAE w/o
TC cannot fully capture the semantic correlation between image and text. In fact, MXQ-VAE
w/o TC completely fails to learn the relationship between image and text. Our approach, on
the other hand, shows the best approximation in all quadrants. This result suggests that MXQ-
VAE can identify the correlation and the difference between image and text. Also, we see
the advantage of the input masking that brings in considerable improvement. Moreover, our
approach again achieves the best performance over baselines on the Flower and CUB Degree
datasets. See more results in supplementary. The above results show that the Transformer
encoder for cross-modal attention and the text compression are essential for the multimodal
semantic correlation, and the input masking also plays a significant role. Consequently, we
choose MXQ-VAE as our final design for unconditional image-text pair generation in Stage 2.

We also visualize the unified code sequences and the attention maps of the Transformer
encoder in the MXQ module. Fig. 4 (a) and (b) show the t-SNE [25] visualizations of the
unified code sequences with MXQ-VAE and Only sharing C for 10 digits per color on Caption
MNIST Single image-text pairs. MXQ-VAE has a unique cluster for each digit, while the
baseline has two. This is because there are two types of text in the Single pairs: 1) This {digit}
is {color}; 2) This is {color} {digit}. As shown in Fig. 4 (c) and (d), MXQ-VAE can capture
the correlation between them, but the baseline completely fails even though they contain the
same content. Fig. 5 visualizes the attention maps on the text tokens when the image patch is
given as a query. These results again show the superiority of MXQ-VAE.

5.2 Generated Image-Text Alignment Results

We evaluate the semantic consistency of the generated image-text pairs as described in
Sec. 4.2.2. Tab. 2 shows the results on Caption MNIST. We can observe that MXQ-VAE
outperforms all baselines on every quadrant. Also, note that all baselines are vulnerable to
which modality is given first to generate the image-text pairs. All models given text first
significantly underperform up to 21.7% (in I_TEmbd and TEmbd_I) on average compared to
the model given image first. We assume that this is due to the fact that quantized image is
longer than text and image often contains more complex (and complete) information than
text. MXQ-VAE, on the other hand, avoids this problem with a unified code sequence. We
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Dataset Degree Models Degree 4 Degree 3 Degree 2 Degree 1 Degree 0

Only Sharing C 0.486 0.443 0.394 0.358 0.315
MXQ-VAE w/o TC 1.0 0.975 0.951 0.929 0.906

Quad4 MXQ-VAE w/o IM 0.896 0.802 0.698 0.595 0.498
Caption MNIST MXQ-VAE (Ours) 0.969 0.729 0.489 0.248 0.009

Only Sharing C - 0.713 0.64 0.558 0.483
MXQ-VAE w/o TC - 1.0 0.968 0.943 0.909

Quad3 MXQ-VAE w/o IM - 0.999 0.862 0.714 0.564
MXQ-VAE (Ours) - 0.997 0.663 0.334 0.012

Only Sharing C 0.939 0.704 0.516 0.321 0.131
MXQ-VAE w/o TC 1.0 0.944 0.886 0.866 0.810

Quad4 MXQ-VAE w/o IM 0.997 0.728 0.482 0.278 0.067
Flower MXQ-VAE (Ours) 0.996 0.737 0.490 0.250 0.014

Only Sharing C - 0.959 0.675 0.426 0.158
MXQ-VAE w/o TC - 1.0 0.927 0.870 0.816

Quad3 MXQ-VAE w/o IM - 0.997 0.662 0.377 0.090
MXQ-VAE (Ours) - 0.999 0.660 0.339 0.019

Only Sharing C 0.985 0.771 0.572 0.356 0.155
MXQ-VAE w/o TC 1.0 0.948 0.894 0.825 0.748

Quad4 MXQ-VAE w/o IM 0.998 0.833 0.645 0.424 0.181
CUB MXQ-VAE (Ours) 0.995 0.749 0.515 0.292 0.083

Only Sharing C - 0.986 0.755 0.498 0.199
MXQ-VAE w/o TC - 1.0 0.938 0.864 0.772

Quad3 MXQ-VAE w/o IM - 0.998 0.806 0.559 0.248
MXQ-VAE (Ours) - 0.995 0.709 0.421 0.119

Table 1: Multimodal semantic correlation on the Caption MNIST, Flower and CUB Degree
datasets. The scores close to 1.0, 0.75, 0.5, 0.25, 0.0 on Quad4 and 1.0, 0.67, 0.33, 0.0 on
Quad3 are better. In general, our approach shows the best performance.

Figure 4: t-SNE visualizations of the unified code sequence on Caption MNIST Single
image-text pairs. In (a) and (b), MXQ-VAE has a unique cluster for each digit compared to
the baseline. In (c) and (d), unlike MXQ-VAE, the baseline cannot identify the correlation
between the two types of text, even though they contain the same content.

report the results on Flower and CUB in Tab. 3. Compared to the baselines, MXQ-VAE
performs well in all metrics, indicating its capability to generate semantically consistent
image-text pairs for real-world data as well as carefully controlled synthetic data. Also, we
again demonstrate the superiority of MXQ-VAE on COCO in Tab. 4. This result indicates
that our approach can be extended to large-scale data in the future.
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Figure 5: Visualization of the attention maps on Flower and CUB. The deeper color indicates
a higher attention score. Although we do not provide any explicit guidance, MXQ-VAE can
properly attend to the related tokens that correspond to the image patch.

Fig. 6 shows the comparison of generated image-text pairs on Caption MNIST. We can
see that MXQ-VAE can generate semantically consistent image-text pairs and also show
high-fidelity image and text. In contrast, although I_TEmbd can generate high-quality text, the
generated images are partially blurry and hard to identify the digit. Also, I&T can generate
high fidelity images, but the generated pairs are irrelevant, showing its poor ability to capture
the relationship between image and text. Similarly, MXQ-VAE shows its superiority on
Flower and CUB as shown in Fig. 7. Unlike MXQ-VAE, some parts of the images of I_TEmbd
are incomplete. Also, I&T and MMVAE [21] cannot generate detailed parts, and most of the
generated images of bird are blurry, and they generate overlapping words. In addition, Joint
GAN [22] fails to generate realistic images and the generated text is grammatically incorrect.
The underline in the figure represents the mismatched part between image and text. For more
samples, refer to supplementary.

Models Single Quad1 Quad2 Quad3 Quad4 Average

I&T 0.979 0.926 0.675 0.434 0.255 0.654
T&I 0.803 0.780 0.458 0.282 0.161 0.497

I_TEmbd 0.953 0.953 0.956 0.958 0.849 0.945
TEmbd_I 0.086 0.895 0.913 0.916 0.828 0.728

MXQ-VAE (Ours) 0.998 0.997 0.994 0.996 0.974 0.992

Table 2: Semantic consistency of the generated image-text pairs on Caption MNIST

In summary, extensive results demonstrate that the quantized joint space with multimodal
semantic correlation is effective for semantically consistent image-text pair generation. Fur-
thermore, our approach enhances the meaningful semantic correlation between image and
text and also encourages the generation of semantically consistent image-text pairs.

Models
Flower CUB

Modified unigram Sentence similarity Modified unigram Sentence similarity

precision Top-1 Top-5 Top-10 precision Top-1 Top-5 Top-10

I&T 0.420 0.935 0.920 0.910 0.418 0.912 0.889 0.875
T&I 0.402 0.910 0.891 0.880 0.425 0.917 0.896 0.884

I_TEmbd 0.406 0.938 0.923 0.913 0.425 0.921 0.900 0.886
TEmbd_I 0.392 0.927 0.900 0.884 0.423 0.917 0.895 0.882

Joint GAN [22] ∗ 0.324 0.808 0.788 0.774 - - - -
MMVAE [21] - - - - 0.262 0.707 0.682 0.667

MXQ-VAE (Ours) 0.428 0.941 0.926 0.916 0.478 0.948 0.919 0.900

Table 3: Semantic consistency of the generated image-text pairs on Flower and CUB.
* means that we measure the score with the image-text pairs reported in Joint GAN [22].

Models P@1 P@5 P@10

I&T 0.062 0.263 0.328
I_TEmbd 0.083 0.29 0.425

MXQ-VAE (Ours) 0.106 0.323 0.491

Table 4: Semantic consistency of the generated image-text pairs on COCO
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Figure 6: Comparison of generated image-text pairs on Caption MNIST

Figure 7: Comparison of generated image-text pairs on Flower and CUB

6 Conclusion and Future Work

In this study, we propose for the first time a novel vector quantizer, MXQ-VAE, that learns
a quantized joint representations space for unconditional image-text pair generation. We
demonstrate that the quantized joint space with a multimodal semantic correlation encourages
the generation of semantically consistent image-text pairs. With extensive experiments, our
approach shows superiority in these two aspects over several baselines. We hope our work
suggests new directions for multimodal generation and joint representation learning. Besides
exploring AI’s multimodal creativity, one promising application of our approach is training
conditional generative models with three or more modalities (e.g., image, text, audio). By
considering MXQ-VAE as a multimodal tokenizer, generative models can generate other
modalities given a multimodal code sequence (or vice versa), which remains as future work.
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