
ASIM, PARK, AZAMAT, LEE: CENTERED SYMMETRIC QUANTIZATION 1

Centered Symmetric Quantization for
Hardware-Efficient Low-Bit Neural Networks
Faaiz Asim*1

faaizasm@unist.ac.kr

Jaewoo Park*2

hecate64@unist.ac.kr

Azat Azamat3

azatkariuly@unist.ac.kr

Jongeun Lee†1

jlee@unist.ac.kr

Dept. of Electrical Engineering1

Dept. of Physics2

Dept. of CSE3

Ulsan National Institute of Science and
Technology (UNIST)
Ulsan, Korea

Abstract

In extremely low-precision quantization, the use of unequal numbers of positive and
negative quantization levels seems sub-optimal when dealing with symmetrical data dis-
tribution such as weight parameters of a neural network. In this paper, based on an
observation that a significant amount of quantization error can be caused by a quan-
tizer with unequal vs. equal numbers of quantization levels, we propose a quantizer that
has perfectly zero-centered quantization levels for weight quantization, dubbed Centered
Symmetric Quantization (CSQ), with an analysis and empirical quantification of why
and how much performance gain CSQ can provide over conventional linear quantiza-
tion (CLQ). Moreover, noting that it is tricky to implement n-bit CSQ using just n-bit
arithmetic hardware, we also propose efficient methods of implementing CSQ using (i)
standard multiplication hardware and (ii) bit-wise binarized neural-net hardware. Our ex-
perimental results using state-of-the-art quantization-aware training methods on ResNets
and MobileNet-v2 show that using CSQ for weight in place of CLQ does offer significant
performance advantage at extremely low-bit precision (2∼3 bits) without any consider-
able overhead.

1 Introduction
Recently the performance of computer vision and image processing methods has been dra-
matically improved by deep neural networks, which however has high computational and
memory requirements. To address this challenge, quantized neural networks (QNNs) [8,
10, 14, 15, 29] are widely used. While QNNs can reduce both computational complexity
and memory requirement quite effectively over a full-precision (i.e., floating-point) version,
the use of limited precision can degrade the performance of a QNN. One way to ameliorate

*equal contribution
†Jongeun Lee is the corresponding author (E-mail: jlee@unist.ac.kr).
© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Choi, Wang, Venkataramani, Chuang, Srinivasan, and Gopalakrishnan} 2018{}

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2019

Citation
Citation
{Jung, Son, Lee, Son, Han, Kwak, Hwang, and Choi} 2019

Citation
Citation
{Krishnamoorthi} 2018

Citation
Citation
{Zhao, Wang, Cai, Liu, and Zhang} 2019

2 ASIM, PARK, AZAMAT, LEE: CENTERED SYMMETRIC QUANTIZATION

the performance degradation of a QNN is to use quantization-aware training (QAT), which is
centered around a quantizer function, a function from real numbers to integers (or fixed-point
numbers). Quantizers often have parameters, and how to parameterize a quantizer function
(e.g. using range [14] or scale [10]) and how to determine parameters (e.g. statistically [7, 30]
vs. by training [14]) as well as the choice of a quantizer function itself (e.g. linear [10, 29] vs.
nonlinear [6, 18, 19, 23, 24]) are all very critical, affecting the result of QAT. In particular,
designing a good quantizer function that is both well-performing and hardware-efficient is
of central importance for successful deployment of QNNs. In this paper we are concerned
with the problem of designing a good quantizer function especially for weights, as opposed
to other aspects such as training methods.

The most commonly used type of quantizer is a uniform step-size (or linear) quantizer,
which places quantization levels at a uniform interval. Linear quantizers are very popular,
in part due to their compatibility with conventional integer MAC (multiply and accumulate)
hardware [29] as well as the availability of many sophisticated training methods developed
for linear quantizers [8, 10, 14, 17, 20, 29].

At extremely low precision, however, a linear quantizer becomes severely unbalanced
in terms of representing positive vs. negative data. For instance, a 2-bit quantizer has only
one quantization level (+1) on the positive side vs. two (−2,−1) on the negative side, which
can impact performance negatively (see Section 3.1 for analysis). This severe imbalance in
the number of quantization levels at extremely low precision is what motivated the use of
perfectly balanced quantization levels such as {−3,−1,1,3} in recent low-precision QNN
training works [4, 5, 7, 11, 17, 30]. We call the use of such a perfectly balanced set of quanti-
zation levels Centered Symmetric Quantization (CSQ) (a more precise definition is provided
in Section 3.2). However, despite the increasing use of CSQ in extreme low-precision weight
quantization, it is unknown whether and how much performance improvement can be made
by the use of a CSQ quantizer instead of a conventional linear quantizer (CLQ). In fact, none
of the previous work using CSQ has explicitly proposed CSQ or even provide a mathemat-
ical definition of a CSQ quantizer; rather, they focus on training methods and the use of a
CSQ quantizer seems incidental.

In addition, efficient hardware realization of CSQ is not straightforward, which, however,
is overlooked by all of the previous work using CSQ [4, 5, 11, 17]. For instance, while 2-bit
CSQ values can be easily stored in 2-bit memory, performing multiplication with a 2-bit CSQ
value using a 2-bit multiplier is problematic—it requires a 3-bit multiplier to handle large
operands such as 3 and −3, which defeats the purpose of using 2-bit quantization. Despite
the apparent difficulty of how to handle larger-than-n-bit values (e.g., 3 and −3 when n=2)
using an n-bit multiplier, most previous work using CSQ does not explain how their chosen
quantization levels can be mapped efficiently on hardware.

In this paper, we first provide a definition of CSQ along with a straightforward training
scheme. We then empirically compare CSQ with CLQ in terms of network performance
on CIFAR-10 and ImageNet datasets, which shows that replacing a CLQ quantizer with a
CSQ quantizer can indeed generate modest performance gain. Although performance im-
provement by CSQ may appear small (CSQ is found to be 0.26∼0.47% better than CLQ at
2-bit, and less at higher precision), at extremely low precision (2∼3-bit) even this amount of
improvement is often considered significant (see e.g. [17]). Also considering the very lim-
ited design space of nonlinear as well as linear quantizers at 2-bit, CSQ does offer a valuable
alternative. Second, we propose efficient realization methods of CSQ using, (i) standard mul-
tipliers and (ii) bitwise Binarized Neural Network (BNN) hardware. Note that though CSQ
can be most efficiently implemented in custom hardware, our proposed method can benefit

Citation
Citation
{Jung, Son, Lee, Son, Han, Kwak, Hwang, and Choi} 2019

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2019

Citation
Citation
{Choi, Chuang, Wang, Venkataramani, Srinivasan, and Gopalakrishnan} 2018{}

Citation
Citation
{Zhou, Wu, Ni, Zhou, Wen, and Zou} 2016

Citation
Citation
{Jung, Son, Lee, Son, Han, Kwak, Hwang, and Choi} 2019

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2019

Citation
Citation
{Zhao, Wang, Cai, Liu, and Zhang} 2019

Citation
Citation
{Choi, Sim, Oh, Lee, and Lee}

Citation
Citation
{Lee, Sim, Choi, and Lee} 2019

Citation
Citation
{Li, Dong, and Wang} 2019

Citation
Citation
{Oh, Sim, Lee, and Lee} 2021

Citation
Citation
{Oh, Sim, Kim, and Lee} 2022

Citation
Citation
{Zhao, Wang, Cai, Liu, and Zhang} 2019

Citation
Citation
{Choi, Wang, Venkataramani, Chuang, Srinivasan, and Gopalakrishnan} 2018{}

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2019

Citation
Citation
{Jung, Son, Lee, Son, Han, Kwak, Hwang, and Choi} 2019

Citation
Citation
{Lee, Kim, and Ham} 2021

Citation
Citation
{Li, Gong, Tan, Yang, Hu, Zhang, Yu, Wang, and Gu} 2021

Citation
Citation
{Zhao, Wang, Cai, Liu, and Zhang} 2019

Citation
Citation
{Boo, Shin, Choi, and Sung} 2021

Citation
Citation
{Chen, Liu, Zhuang, Tan, and Shen} 2021

Citation
Citation
{Choi, Chuang, Wang, Venkataramani, Srinivasan, and Gopalakrishnan} 2018{}

Citation
Citation
{Gong, Liu, Jiang, Li, Hu, Lin, Yu, and Yan} 2019

Citation
Citation
{Lee, Kim, and Ham} 2021

Citation
Citation
{Zhou, Wu, Ni, Zhou, Wen, and Zou} 2016

Citation
Citation
{Boo, Shin, Choi, and Sung} 2021

Citation
Citation
{Chen, Liu, Zhuang, Tan, and Shen} 2021

Citation
Citation
{Gong, Liu, Jiang, Li, Hu, Lin, Yu, and Yan} 2019

Citation
Citation
{Lee, Kim, and Ham} 2021

Citation
Citation
{Lee, Kim, and Ham} 2021

ASIM, PARK, AZAMAT, LEE: CENTERED SYMMETRIC QUANTIZATION 3

software implementations as well, so long as the efficiency of a software implementation
is inversely proportional to the bitwidth of arithmetic operations (e.g. Dorefa-net-style [30]
XNOR-popcount based implementation on CPU or GPU). Our QNN mapping experiments
demonstrate that our proposed methods can map CSQ to digital hardware as efficiently as
CLQ. Combined, our results show the superiority of CSQ over CLQ at very low precision.

2 Background and Previous Work
Quantization Primer: A uniform step-size quantizer can be formulated as

x̃ = clip(
⌊x

s

⌉
,L,U) · s (1)

where L and U (the lower and upper bound) are the minimum and maximum integer values
that xQ can take, ⌊·⌉ is the round operation, and clip(x,a,b) = min(max(x,a),b).

In the case of symmetric quantizer (for signed input):

L =−2b−1, U = 2b−1 −1 (2)

In the case of asymmetric quantizer (for un-signed input):

L = 0, U = 2b −1. (3)

From now on we will refer to the quantization method defined by (1) and (2) as the
Conventional Linear Quantizer (CLQ). We do not consider non-uniform quantization for the
scope of this paper.

Previous Work Using CSQ: The idea of using a zero-centered quantizer is also seen
in [4, 5, 7, 11, 17, 30]. However, none of these works address the problem of realizing
zero-centered quantization on hardware. Instead they focus on novel training methods for
their quantizers. One exception is [9], whose hardware implementation is presented in [1],
which, however, ends up using non-uniform quantization levels (i.e., {−4,−1,1,4} for 2-bit
quantization).

3 CSQ: Motivation, Definition and Analysis

3.1 Impact of Unbalanced Quantization Levels
To motivate the use of perfectly balanced quantization levels, Figure 1 shows the impact
of using unbalanced quantization levels (i.e., CLQ) on weight quantization error in each
layer of ResNet-18 trained for ImageNet classification. The y-axis shows the percent in-
crease in weight quantization error of using CLQ vs. prefectly balanced quantization levels
(i.e., CSQ): error_increase(%) = (ECLQ −ECSQ)/ECSQ ×100, where ECLQ and ECSQ are the
quantization errors defined as ⟨(w−wq)

2⟩, w is the full precision weight, and wq is the quan-
tized weight using either CLQ or CSQ. This experiment is done in a QAT setting where
the layer-wise step size parameter is optimized by an exhaustive search for each case (CLQ
or CSQ). One can see that the imbalance in weight quantization levels can increase weight
quantization errors by about 10∼20% in middle layers at 2-bit precision albeit less at higher
precision. Also it is interesting to note that CSQ is more beneficial in later layers.

Citation
Citation
{Zhou, Wu, Ni, Zhou, Wen, and Zou} 2016

Citation
Citation
{Boo, Shin, Choi, and Sung} 2021

Citation
Citation
{Chen, Liu, Zhuang, Tan, and Shen} 2021

Citation
Citation
{Choi, Chuang, Wang, Venkataramani, Srinivasan, and Gopalakrishnan} 2018{}

Citation
Citation
{Gong, Liu, Jiang, Li, Hu, Lin, Yu, and Yan} 2019

Citation
Citation
{Lee, Kim, and Ham} 2021

Citation
Citation
{Zhou, Wu, Ni, Zhou, Wen, and Zou} 2016

Citation
Citation
{Choi, Venkataramani, Srinivasan, Gopalakrishnan, Wang, and Chuang} 2019

Citation
Citation
{Agrawal, Lee, Silberman, Ziegler, Kang, Venkataramani, Cao, Fleischer, Guillorn, Cohen, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

4 ASIM, PARK, AZAMAT, LEE: CENTERED SYMMETRIC QUANTIZATION

0 5 10 15
LAYERS

10

0

10

20

30

ER
RO

R
RE

DU
CT

IO
N

BY
 C

SQ

(a) 2-bit precision

0 5 10 15
LAYERS

10

5

0

5

10

15

ER
RO

R
RE

DU
CT

IO
N

BY
 C

SQ

(b) 3-bit precision

0 5 10 15
LAYERS

6

4

2

0

2

4

6

8

ER
RO

R
RE

DU
CT

IO
N

BY
 C

SQ

(c) 4-bit precision

Figure 1: Percent error reduction using CSQ (for ResNet-18 trained on ImageNet).

(a) Quantization of 2-bit signed data
using conventional linear quantization
(CLQ) vs. CSQ (ours).

(b) The gradient of the CSQ quantiza-
tion output w.r.t. step size.

Figure 2: CSQ quantizer and gradient.

3.2 Quantizer Function for CSQ

We define CSQ quantizer as a quantizer function that has both uniform step size and perfect
symmetry between the positive and negative quantization levels (e.g. {−1.5,−0.5,0.5,1.5}
for 2-bit). Mathematically, a CSQ quantizer (and a simulated quantizer for the purpose of
training) can be formulated as follows.

v̇ =
⌊v

s
+0.5

⌉
−0.5 (4)

v̄ = clip(v̇,−Q,Q) (5)
v̂ = v̄× s (6)

where v is any input value, s is the step size, and Q = 2b−1 − 0.5 with b being the quanti-
zation precision (i.e., the number of bits). Here v̄ is not an integer. Nevertheless, it is an
exact value that can be represented by the b-bit CSQ format. Moreover, our proposed CSQ
format permits efficient hardware and software realizations (see Section 4.2). Therefore v̄
represents the value that is computed by b-bit hardware. Finally, v̂ is the scaled-back version
of v̄, defined and used for the purpose of training. The proposed quantizer provides equal
representation for the positive and negative sides of the input distribution. Figure 2a shows
the 2-bit quantizer functions for conventional linear quantization and our CSQ. Figure 2b
shows the gradient w.r.t. the step size, which is a quantization parameter.

ASIM, PARK, AZAMAT, LEE: CENTERED SYMMETRIC QUANTIZATION 5

30 1 2½
zxoo o ox

(= zCLQ)(= zCSQ)

Figure 3: Zero-points for CLQ and CSQ at 2-bit (marked as “x”). Affine quantizer allows
integer zero-point only (shown as green circles) whereas in relaxed affine quantizer, zero-
point can take any real value.

3.3 Analysis of Uniform Quantizer via Affine Quantization
In this section we present an analytical comparison between CSQ and CLQ using a more
general framework of affine quantization, which is defined as follows [15]:

xint =
⌊x

s

⌉
+ z, x̄ = clip(xint ,0,2b −1), x̂ = s(x̄− z) (7)

where z is called zero-point, and must be an integer. Given the integer constraint on zero-
point, an affine quantizer cannot represent CSQ (see Figure 3). However, if we relax the
zero-point to be any real value, CLQ and CSQ can both be considered as a special case of
the relaxed affine quantizer. Then the zero-point for CLQ (zCLQ) and CSQ (zCSQ) can be
defined as follows:

zCLQ = 2b−1, zCSQ = 2b−1 −0.5 (8)

For instance, at b = 2, the term
⌊ x

s

⌉
has the range of {−2,−1,0,1} in (signed) CLQ. Thus

to satisfy (7), we have zCLQ = 2.
The above view provides us with a methodology to somewhat objectively compare CSQ

and CLQ by the distance of the optimal real-valued zero-point (z∗) to zCSQ vs. zCLQ. Figure 4
shows the distribution of optimal zero-points for ResNet-20 for 2, 3 and 4-bit precision
trained on CIFAR-10. The training settings are the same as explained in Section 5.1. These
analytical results lead to the following key insights:

• The optimal zero-point is typically closer to CSQ than CLQ which indicates the im-
portance of perfectly symmetric quantization levels (over exact zero-representation).

• As the precision increases, the optimal zero-point tends to move away from CSQ to-
wards CLQ. A similar observation could be deduced from (8), since the difference
between zCLQ and zCSQ, relative to the entire quantization range, diminishes exponen-
tially as b increases (see Appendix I).

4 Efficient Realization of CSQ Multiplication
Here we present our methods to efficiently realize multiplications involving CSQ values, one
using standard multipliers and one using bitwise BNN hardware. Since the activations are
usually unsigned due to ReLU activation, in this section we conisder unsigned activations
quantized by CLQ and weights quantized by CSQ. However, our methods can be extended
to CSQ-CSQ multiplication as well.

Citation
Citation
{Krishnamoorthi} 2018

6 ASIM, PARK, AZAMAT, LEE: CENTERED SYMMETRIC QUANTIZATION

1.25 1.50 1.75 2.00
Zero Points

0

1

2

3

4

Fr
eq

ue
nc

y
Affine Zero Point
CLQ
CSQ

(a) 2-bit precision

3.4 3.6 3.8 4.0
Zero Points

0

1

2

3

4

Fr
eq

ue
nc

y

Affine Zero Point
CLQ
CSQ

(b) 3-bit precision

7.6 7.8 8.0
Zero Points

0

10

20

30

Fr
eq

ue
nc

y

Affine Zero Point
CLQ
CSQ

(c) 4-bit precision

Figure 4: Distribution of optimal zero-point values of relaxed affine quantizer, across layers.
The graphs also show the zero-points for CSQ and CLQ, represented as vertical lines.

4.1 Realization of CSQ via Affine Quantizer
In Section 3.3 we showed that CSQ can be considered as a special case of relaxed affine
quantizer with a specific zero-point value. Based on this, we propose an efficient method to
realize CSQ on standard multipliers (such as on CPUs; see Appendix E for derivation).

ŵx̂ = ((w̄−0.5)× sw)(x̄× sx) = w̄x̄swsx −0.5× swsxx̄︸ ︷︷ ︸
overhead

(9)

where w̄ is an integer and w̄− 0.5 is an exact CSQ value (i.e., 0.5 is the zero-point). Note
that activations do not have a zero-point as they are quantized using unsigned CLQ. So
our method is to use the integer w̄ instead of its CSQ value during a tensor operation (e.g.,
convolution), whose result is later corrected by the overhead term 0.5×swsxx̄, which involves
only the input activation and step size parameters, and has negligible operational overhead
on CPUs and GPUs compared to the tensor operation. This method is very flexible, and can
be applied to any software or hardware implementation.

A CSQ quantizer realized using (9) is more efficient than a relaxed affine quantizer as
follows:

• Whereas CSQ’s overhead term can be implemented using a simple bit-shift operation
(multiplying 0.5 is equivalent to one-bit shift right), the overhead term of a relaxed
affine quantizer would require an actual multiplication, which is much more costly.

• CSQ’s zero-point value (i.e., 0.5) is fixed and therefore can be hardwired, but that of
a relaxed affine quantizer needs to be retrieved from the memory, requiring additional
memory access.

However, our CSQ realization method based on (9) can still result in small overhead on
custom hardware platforms such as FPGAs (see results in Table 4) due to the extra hardware
for the overhead term. Therefore, we also propose our bitwise-style CSQ realization method
in Section 4.2 for the most efficient implementation of CSQ in hardware.

4.2 Realization of CSQ on Bitwise BNN Hardware
This method targets bitwise BNN hardware, which has an important advantage. Not only
can it support QNNs using the method in [30] but it can also change precision at runtime
without runtime overhead.

Citation
Citation
{Zhou, Wu, Ni, Zhou, Wen, and Zou} 2016

ASIM, PARK, AZAMAT, LEE: CENTERED SYMMETRIC QUANTIZATION 7

Table 1: Comparison of number representations: CLQ vs. CSQ (2-bit example)

2-bit binary CLQs CLQu CSQ
00 0 0 −3
01 1 1 −1
10 −2 2 1
11 −1 3 3

The core of bitwise BNN hardware is an AND-popcount or XNOR-popcount engine
[27], which performs an inner-product computation between two N-dimensional bit vectors.
Let x and v be an unsigned CLQ vector and a CSQ vector, respectively, each of which is
N-dimensional and n-bit.

An n-bit binary number an−1an−2...a0 (n ≥ 2) represents the following value: Ab =

∑
n−1
i=0 ai2i. We define the CSQ number format as exemplified in Table 1, which leads to

the following equalities (the second equality is not obvious, but is correct).

Acsq =
n−1

∑
i=0

ai2i − (2n −1)/2 =
n−1

∑
i=0

(−1)ai+12i−1 (10)

To avoid dealing with fractional numbers, let us use the 2× scaled version of CSQ (e.g.
{−3,−1,1,3} for 2-bit precision). Then,

Acsq2 =
n−1

∑
i=0

(−1)ai+12i, (11)

which has a very similar mathematical structure as a CLQ number, allowing us to use the
same trick of changing the order of precision (n) and vector dimension (N) as in the inner-
product computation of two CLQ numbers. Finally, we arrive at the following inner-product
computation method:

v ·x = (vH ·xH << 2)+(vH ·xL << 1)+(vL ·xH << 1)+vL ·xL (12)

which is shown for the 2-bit case (n = 2). xH and xL (similarly for vH and vL) are the N-
dimensional bit-vectors of x containing only the higher and lower bits, respectively, and << is
the bitwise shift-left operation. Each product on the right-hand side of (12) can be computed
on BNN hardware in a single cycle. Thus v · x can be computed in four cycles, using an
additional adder/accumulator. It is worth mentioning that the same method as illustrated in
(12) is also used when computing the inner-product of two CLQ vectors.

Now for the inner-product of two bit-vectors (e.g. vH ·xH) we can use the same structure
of a bitwise operation followed by popcount, with a slight variation.

vcsq2 ·xclqu = 2 ·popcount(AND(vcsq2,xclqu))−popcount(xclqu) (13)

We subtract popcount(xclqu), since the bits of the CSQ bit-vector corresponding to the zero
elements of the CLQ bit-vector must be ignored. Note that BNN hardware, e.g. [27], relies
on the same method for the inner-product computation of two bit-vectors, except that we use
AND instead of XNOR and to subtract a popcount value, we need an additional popcount
operation. However, accelerating QNNs with the CLQ format also requires AND operations

Citation
Citation
{Umuroglu, Fraser, Gambardella, Blott, Leong, Jahre, and Vissers} 2017

Citation
Citation
{Umuroglu, Fraser, Gambardella, Blott, Leong, Jahre, and Vissers} 2017

8 ASIM, PARK, AZAMAT, LEE: CENTERED SYMMETRIC QUANTIZATION

in the exact same manner, and the additional popcount operation does not increase the hard-
ware cost. Thus the bit-vector-level complexity of using CSQ is nearly the same as that of
using CLQ. Since there is no distinction at the vector level, the inner-product operation with
CSQ can be implemented as efficiently as with CLQ.

5 Experiments

5.1 Experimental Setup

We conduct experiments on CIFAR-10 [16] and ImageNet [25] using ResNet-18, ResNet-20,
ResNet-34 [12] and MobileNet-v2 [26]. All quantized models on ImageNet are initialized
with the weights of pretrained full-precision model of the same network. The first and last
layers are kept at 8-bit precision. Other than convolution and fully connected layers, all the
other layers, e.g. batch norm, are kept in full precision.

For ImageNet experiments we use the training recipe of [10]. We use stochastic gra-
dient descent (SGD) optimizer, with 0.9 momentum, cosine learning rate decay [21] with-
out restarts, and the initial learning rate of 0.01. Weight decay is 0.25× 10−4 for 2-bit,
0.5× 10−4 for 3-bit, and 10−4 for 4-bit quantization. The quantized models are fine-tuned
for 90 epochs. For ResNet-18 ImageNet experiments, we train the full-precision model our-
selves from scratch.

For CIFAR-10 experiments we conduct experiments using LSQ[10] and NICE[2] for
training. LSQ quantized models are trained from scratch. We use the same setting as with
ImageNet experiments except the following: the initial learning rate is 0.1, weight decay is
10−4, and each model is trained for 300 epochs. Experiments are conducted using ResNet-20
network. NICE quantized models are trained using the official code1 provided by authors.
The quantized models are initialized with full precision model and fine-tuned for 120 epochs.
We used 0.01 initial learning rate, 0.9 momentum, 0.04 weight decay and multi-step learning
rate decay. Experiments are conducted using ResNet-18 network.

5.2 Experimental Results

For CIFAR-10 experiments we compare our method with CLQ using a state-of-the-art QAT
method by [10] and [2]. [2] uses Reduced Symmetric Quantization (RSQ), which is ex-
plained in Appendix B. Each case is repeated five times; mean ± std. dev. is reported for
each case. CIFAR-10 results are summarized in Table 2.

For ImageNet experiments, we compare CLQ vs. CSQ using ResNet and MobileNet. We
also compare our method with PACT [8], LQ-Nets [28] and QIL [14]. Since we use the train-
ing method by LSQ [10], the CLQ case also represents the previous work (LSQ). However,
LSQ use pre-activation ResNet [12] which has higher performance than the standard ResNet
architecture, and their trained models are not available. Therefore for a fair comparison, we
have implemented LSQ ourselves, and use it as the baseline. [17] is another recent work
that presents a training method for QNNs, that outperforms LSQ. However, they already use
a quantizer that results in zero-centered quantization levels, similar to the one proposed in
this paper. Therefore, we do not compare our results with them. The ImageNet results are
summarized in Table 3 which shows that CSQ outperforms CLQ for all cases. However,

1https://github.com/Lancer555/NICE

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, etprotect unhbox voidb@x protect penalty @M {}al.} 2015

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2019

Citation
Citation
{Loshchilov and Hutter} 2016

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2019

Citation
Citation
{Baskin, Zheltonozhkii, Rozen, Liss, Chai, Schwartz, Giryes, Bronstein, and Mendelson} 2021

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2019

Citation
Citation
{Baskin, Zheltonozhkii, Rozen, Liss, Chai, Schwartz, Giryes, Bronstein, and Mendelson} 2021

Citation
Citation
{Baskin, Zheltonozhkii, Rozen, Liss, Chai, Schwartz, Giryes, Bronstein, and Mendelson} 2021

Citation
Citation
{Choi, Wang, Venkataramani, Chuang, Srinivasan, and Gopalakrishnan} 2018{}

Citation
Citation
{Zhang, Yang, Ye, and Hua} 2018

Citation
Citation
{Jung, Son, Lee, Son, Han, Kwak, Hwang, and Choi} 2019

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2019

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Lee, Kim, and Ham} 2021

ASIM, PARK, AZAMAT, LEE: CENTERED SYMMETRIC QUANTIZATION 9

Table 2: Comparison of RSQ (see Appendix B) and CLQ vs. CSQ (ours) on ResNet-20 and
ResNet-18 for CIFAR-10.

Top-1 Accuracy @ Precision
Precision (W/A) : 2/2 3/3 4/4

ResNet-18
Training Method Quantizer Full Precision: 93.20

NICE RSQ 92.07±0.06 93.00±0.13 93.48±0.16
NICE CSQ 92.58±0.10 93.24±0.12 93.45±0.16

ResNet-20
Full Precision: 91.22

LSQ CLQ 89.09±0.11 90.70±0.18 91.07±0.13
LSQ CSQ 89.46±0.23 90.80±0.12 90.96±0.25

Table 3: Comparison of CLQ vs. CSQ (ours), along with previous QAT results on ImageNet.
The CLQ case also represents LSQ [10]. MobileNet-v2 2-bit case did not converge.

Top-1 Accuracy @ Precision
Network ResNet-18 ResNet-34 MobileNet-v2

Full Precision: 70.58 Full Precision: 73.31 Full Precision: 71.88
Precision (W/A) 2/2 3/3 4/4 2/2 3/3 4/4 2/2 3/3 4/4
PACT 64.40 68.10 69.20 - - - - - -
LQ-Nets 64.90 68.20 69.30 69.80 71.90 - - - -
QIL 65.70 69.20 70.10 70.60 73.10 73.70 - - -
CLQ (LSQ) 66.59 69.38 70.52 70.56 73.21 73.82 - 60.41 66.82
CSQ (LSQ) 66.92 69.48 70.63 70.82 73.29 74.01 - 60.89 66.98

the performance gain by CSQ diminishes as precision increases which is consistent with the
insights from our analysis in Section 3.3. 2

5.3 FPGA Synthesis Results
In Table 4 we compare hardware synthesis results for five cases: (i) CLQ realized using
standard multiplication, (ii) CLQ on bitwise BNN hardware, (iii) CSQ on bitwise BNN
hardware0, (iv) (relaxed) affine quantizer using a 8-bit fixed-point zero-point, and (v) affine
quantizer with a hardwired zero-point for CSQ. The hardware is a 16x16 two-dimensional
array of PEs (processing elements) performing an MVM (matrix-vector multiplication) op-
eration. For synthesis we use Xilinx Vivado, targeting Zynq ZCU104 FPGA, and the FPGA
resource utilization and the minimum clock cycle time (latency) are reported. ADP (area-
delay product) is calculated as the product of latency and the geometric mean of LUT and
FF utilization, with the case of CLQ being 100%.3

The table indicates that at 2-bit precision, bitwise BNN hardware is about 10% more
efficient in ADP than a multiplier-based design. Between the bitwise BNN hardware cases,
CLQ is slightly more efficient than CSQ, but the difference is very marginal. Overall, CSQ
implemented on BNN hardware can reduce ADP over multiplier-based CLQ by 8.6% at 2-
bit, though this improvement becomes less at higher precision (≥ 3-bit). Our results also
indicate that the relaxed affine quantizer has a considerable hardware overhead. On the other

2In Appendix F we provide additional experiments for CSQ vs. CLQ using Post-Training Quantization (PTQ)
and QAT with knowledge distillation.

3ADP is a commonly used metric for hardware efficiency, and we use FPGA as opposed to ASIC, since (i)
FPGA is frequently used for deep neural network acceleration and (ii) FPGA synthesis result is easily reproducible
and more complete.

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2019

10 ASIM, PARK, AZAMAT, LEE: CENTERED SYMMETRIC QUANTIZATION

Table 4: 16x16 MVM hardware synthesis results on Xilinx FPGA

Precision 2-bit 3-bit
Utilization Latency ADP Utilization Latency ADP

LUT FF (ns) (%) LUT FF (ns) (%)
CLQ w/ Mult. 897 671 2.07 100 1171 1009 2.11 100

CLQ w/ BNN HW 673 624 2.20 88.8 992 926 2.31 96.5
CSQ w/ BNN HW 681 630 2.24 91.4 1001 944 2.35 99.6

(Relaxed) Affine Quantizer 1002 849 2.81 161 1362 1277 2.89 166
CSQ w/ Affine HW 913 680 2.33 114 1207 1015 2.42 117

hand, when restricted to CSQ, the overhead of an affine quantizer becomes greatly reduced
thanks to our method of using constant zero-point, though it still has a significant overhead
compared with our proposed BNN hardware-based implementation. These results show that
CSQ is as efficient as CLQ and much more efficient than relaxed affine quantizer.

6 Conclusion

In this paper we provided an analysis of CSQ for extreme low-bit quantization, which is both
completely symmetric around zero and trainable using existing linear QAT methods. Our
analyses and experimental results using state-of-the-art QAT methods with CIFAR-10 and
ImageNet datasets show that a simple change of quantization levels can result in significant
performance improvement for extremely low-bit quantized neural networks (≤ 3-bit). We
also showed that CSQ can be realized efficiently on standard multipliers and BNN hardware
by our methods. Considering there are very few previous works targeting 2-bit network
performance, CSQ can be a very useful tool for optimizing extreme low-precision neural
networks for deployment.

7 Acknowledgement

This work was supported by the Samsung Advanced Institute of Technology, Samsung Elec-
tronics Co., Ltd., by IITP grant (No. 2020-0-01336, Artificial Intelligence Graduate School
Program (UNIST)) and NRF grant (No. 2020R1A2C2015066) funded by MSIT of Korea,
and by Free Innovative Research Fund of UNIST (1.170067.01).

References
[1] Ankur Agrawal, Sae Kyu Lee, Joel Silberman, Matthew Ziegler, Mingu Kang, Swagath

Venkataramani, Nianzheng Cao, Bruce Fleischer, Michael Guillorn, Matthew Cohen,
et al. A 7nm 4-core ai chip with 25.6 tflops hybrid fp8 training, 102.4 tops int4 infer-
ence and workload-aware throttling. In 2021 IEEE International Solid-State Circuits
Conference (ISSCC), volume 64, pages 144–146. IEEE, 2021.

[2] Chaim Baskin, Evgenii Zheltonozhkii, Tal Rozen, Natan Liss, Yoav Chai, Eli Schwartz,
Raja Giryes, Alexander M Bronstein, and Avi Mendelson. Nice: Noise injection and
clamping estimation for neural network quantization. Mathematics, 9(17):2144, 2021.

ASIM, PARK, AZAMAT, LEE: CENTERED SYMMETRIC QUANTIZATION 11

[3] Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, and Nojun Kwak.
Lsq+: Improving low-bit quantization through learnable offsets and better initializa-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 696–697, 2020.

[4] Yoonho Boo, Sungho Shin, Jungwook Choi, and Wonyong Sung. Stochastic precision
ensemble: self-knowledge distillation for quantized deep neural networks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 35, pages 6794–6802,
2021.

[5] Peng Chen, Jing Liu, Bohan Zhuang, Mingkui Tan, and Chunhua Shen. Aqd: Towards
accurate quantized object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 104–113, 2021.

[6] Jooyeon Choi, Hyeonuk Sim, Sangyun Oh, Sugil Lee, and Jongeun Lee. MLogNet: A
logarithmic quantization-based accelerator for depthwise separable convolution. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD).
doi: 10.1109/TCAD.2022.3150249.

[7] Jungwook Choi, Pierce I-Jen Chuang, Zhuo Wang, Swagath Venkataramani, Vijay-
alakshmi Srinivasan, and Kailash Gopalakrishnan. Bridging the accuracy gap for 2-bit
quantized neural networks (qnn). arXiv preprint arXiv:1807.06964, 2018.

[8] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalak-
shmi Srinivasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation
for quantized neural networks. arXiv preprint arXiv:1805.06085, 2018.

[9] Jungwook Choi, Swagath Venkataramani, Vijayalakshmi Srinivasan, Kailash
Gopalakrishnan, Zhuo Wang, and Pierce Chuang. Accurate and efficient 2-bit quan-
tized neural networks. In Proceedings of the 2nd SysML Conference, 2019.

[10] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy,
and Dharmendra S Modha. Learned step size quantization. In International Conference
on Learning Representations, 2019.

[11] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin,
Fengwei Yu, and Junjie Yan. Differentiable soft quantization: Bridging full-precision
and low-bit neural networks. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 4852–4861, 2019.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[13] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[14] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun
Kwak, Sung Ju Hwang, and Changkyu Choi. Learning to quantize deep networks by
optimizing quantization intervals with task loss. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4350–4359, 2019.

12 ASIM, PARK, AZAMAT, LEE: CENTERED SYMMETRIC QUANTIZATION

[15] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient
inference: A whitepaper. arXiv preprint arXiv:1806.08342, 2018.

[16] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[17] Junghyup Lee, Dohyung Kim, and Bumsub Ham. Network quantization with element-
wise gradient scaling. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6448–6457, 2021.

[18] Sugil Lee, Hyeonuk Sim, Jooyeon Choi, and Jongeun Lee. Successive log quantization
for cost-efficient neural networks using stochastic computing. In Proceedings of the
56th Annual ACM/IEEE Design Automation Conference (DAC), pages 7:1–7:6, June
2019.

[19] Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: An effi-
cient non-uniform discretization for neural networks. In International Conference on
Learning Representations, 2019.

[20] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei
Wang, and Shi Gu. Brecq: Pushing the limit of post-training quantization by block
reconstruction. arXiv preprint arXiv:2102.05426, 2021.

[21] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983, 2016.

[22] Joel Max. Quantizing for minimum distortion. IRE Transactions on Information The-
ory, 6(1):7–12, 1960.

[23] Sangyun Oh, Hyeonuk Sim, Sugil Lee, and Jongeun Lee. Automated log-scale quanti-
zation for low-cost deep neural networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 742–751, 2021.

[24] Sangyun Oh, Hyeonuk Sim, Jounghyun Kim, and Jongeun Lee. Non-uniform step
size quantization for accurate post-training quantization. In Proceedings of the 17th
European Conference on Computer Vision (ECCV). Springer International Publishing,
2022.

[25] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet.
International journal of computer vision, 115(3):211–252, 2015.

[26] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018.

[27] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip
Leong, Magnus Jahre, and Kees Vissers. Finn: A framework for fast, scalable bina-
rized neural network inference. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 65–74, 2017.

ASIM, PARK, AZAMAT, LEE: CENTERED SYMMETRIC QUANTIZATION 13

[28] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned
quantization for highly accurate and compact deep neural networks. In Proceedings of
the European conference on computer vision (ECCV), pages 365–382, 2018.

[29] Xiandong Zhao, Ying Wang, Xuyi Cai, Cheng Liu, and Lei Zhang. Linear symmetric
quantization of neural networks for low-precision integer hardware. In International
Conference on Learning Representations, 2019.

[30] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-
net: Training low bitwidth convolutional neural networks with low bitwidth gradients.
arXiv preprint arXiv:1606.06160, 2016.

