. Centered Symmetric Quantization for
IdMNisT Hardware-Efficient Low-bit Neural Networks

ULSAN NATIONAL INSTITUTE OF
SCIENCE AND TECHNOLOGY

Introduction

Problem:
o Conventional Linear Quantization (CLQ) results in unequal number of positive and negative quantization levels (e.g 2-bit signed CLQ has
{-2,-1, 0, 1} quantization levels)
o A perfectly symmetric linear quantizer can not be realized using standard multipliers without large overhead
Contributions:
o We propose Centered Symmetric Quantization (CSQ)
o We propose efficient methods to realize CSQ on hardware:
1. Using standard multiliers with small overhead
2. Using Binarized Neural Network (BNN) hardware with no overhead

CSQ Definition

We define Centered Symmetric Quantization (CSQ) as a quantizer that has:
1. Uniform step-size between quantization levels
2. Perfectly symmetric quantization levels
CsQ is formulated as:
v
i=[2+05]-05
s
= Clip (‘-}7 -0, Q) B 32 a4 oo 11 3

Conventional Linear Quantizer Centered Symmetric Quantizer
(cLa) (Csq)

CSQ Hardware Realization

Method 1: On standard multipliers using affine quantization
Zero-point for CSQ and CLQ in context of affine quantization:
Zepg = 2071, zg5o = 2071 - 05

2-bit csq | €SQ binary encoding
Integer 1 0
- Z¢sQ= ZcLg — 0.5 g 2 >
Realizing CSQ as affine quantizer: g = ((Ww—0.5) X 5,) (¥ X 5¢) = WEsysy — 0.5 X 5,,5,% 5 S
——

o . overhead 0 1
+ Significantly smaller overhead compared to affine quantizer
+ Flexible method generalizeable to any hardware 1 0
- Results in small overhead 1 1

2-bit CSQ binary encoding

Method 2: Bitwise BNN-hardware based method
An n-bit CSQ number can be represented in binary using +1 and -1, instead of 0 and 1. (See 2-bit CSQ binary encoding example)
For signed weights and unsigned activations , CSQ-CLQ multiplication can be computed using AND-popcount:
Vesq- Xclg, = 2 * Popcount (AND(vcsq,xdqu)) — popcount(xciq,)
+ No overhead
+ Configurable precision due to bit-wise operations
- Cannot be realized using standard multipliers

Faaiz Asim”, Jaewoo Park”, Azat Azamat, Jongeun Lee

Learned per-layer zero-point distribution for ResNet-20 compared to CSQ vs. CLQ
o Zero-point distribution is closer to CSQ than CLQ especially at 2-bit precision
o Zero-point distribution tends to moves from CSQ towards CLQ as the precision increases

3 Affine Zero Point 4
o

ES

— cse

w

w
Frequency
N
Frequency

Frequency
N

=
-

o
o

125 1.50 1.75 2.00 3.4 3.6 3.8 . 7.6 7.8
Zero Points Zero Pqints Zero Points
2-bits 3-bits 4-bits

ImageNet Results

Top-1 Accuracy @ Precision

ResNet-18 ResNet-34 MobileNet-v2
Full Precision: 70.58 Full Precision: 73.31 Full Precision: 71.88
Precision (W/A) 212 3/3 4/4 22 3/3 4/4 22 3/3 4/4
PACT 6440 68.10 69.20 - -
LQ-Nets 6490 6820 69.30 69.80 71.90 -
QIL 65.70 69.20 70.10 70.60 73.10 73.70 - -
CLQ (LSQ) 66.59 69.38 70.52 70.56 73.21 73.82 60.41 66.82
CSQ (LSQ) 66.92 69.48 70.63 70.82 73.29 74.01 60.89 66.98

FPGA Results

Precision 2-bit 3-bit
Utilization Latency Utilization Latency

LUT FF (ns) LUT FF (ns)
CLQ w/ Mult. 897 671 2.07 1171 1009 2.11
CLQ w/ BNN HW 673 624 2.20 992 926 2.31
CSQ w/ BNN HW 681 630 2.24 . 1001 944 2.35
(Relaxed) Affine Quantizer | 1002 849 2.81 1362 1277 2.89
CSQ w/ Affine HW 913 680 2.33 1207 1015 242

Conclusion

€sQ for weight quantization can provide significant performance improvement compared to CLQ at extremely low precision (<3-bits)

Network

At higher precisions (>4-bits) the performance improvement using CSQ diminishes.
For standard multipliers (e.g., GPU, CPU), our affine quantization-based hardware realization method allows €SQ realization with a very
small overhead.

Our bitwise BNN hardware-based method allows CSQ realization without any overhead.

