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A Variations of CSQ in Previous Works
As defined in Appendix B CSQ stipulates uniform step size and perfect symmetry between
positive and negative quantization levels. Therefore, CSQ should not be restricted to the
quantizer formulated in (4). CSQ should be considered as a family of quantizers with uni-
form step size and perfectly symmetric quantization levels. [2, 3, 4, 7, 10] all belong to the
CSQ family.

[4] statistically computes the optimal scale for quantization bins using (14). c1 and c2
are coefficients depending on the quantization precision.

α
∗
w = c1 ∗

√
E (w2)− c2 ∗E(|w|) (14)

Their quantizer results in perfectly symmetric quantization levels because they use same
scale for positive and negative range of weights distribution. Therefore their quantizer be-
longs to the the CSQ family.

[7] uses a soft quantizer that converges to CSQ during training. Their quantization is
given by (15).

QS(x) =


l, x < l
u, x > u

l +∆

(
i+ ϕ(x)+1

2

)
, x ∈ Pi

(15)

*equal contribution
†Jongeun Lee is the corresponding author (E-mail: jlee@unist.ac.kr).
© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Boo, Shin, Choi, and Sung} 2021

Citation
Citation
{Chen, Liu, Zhuang, Tan, and Shen} 2021

Citation
Citation
{Choi, Chuang, Wang, Venkataramani, Srinivasan, and Gopalakrishnan} 2018{}

Citation
Citation
{Gong, Liu, Jiang, Li, Hu, Lin, Yu, and Yan} 2019

Citation
Citation
{Lee, Kim, and Ham} 2021

Citation
Citation
{Choi, Chuang, Wang, Venkataramani, Srinivasan, and Gopalakrishnan} 2018{}

Citation
Citation
{Gong, Liu, Jiang, Li, Hu, Lin, Yu, and Yan} 2019



ASIM, PARK, AZAMAT, LEE: CENTERED SYMMETRIC QUANTIZATION 15

Where ϕ(x) is a differential asymptotic function used to approximate uniform quantizer.
They use tanh function to approximate the quantizer which results in perfectly symmetric
quantization levels.

[2] proposes a weight quantizer similar to PACT [5]. They parameterize and learn the
clipping parameter during training. Their quantizer is shown in (19).

ŵ = 0.5(|w+αw|− |w−αw|) (16)

ŵ′ =
ŵ

2αw
+0.5 (17)

Q(w)′ =
⌈
ŵ′ · (2n −1)

⌋
/(2n −1) (18)

Q(w) = 2αw
(
Q(w)′−0.5

)
(19)

Their quantizer has the same clipping parameter for positive and negative range of distri-
bution. Therefore, their quantizer is perfectly symmetric and behaves same as CSQ defined
in (4) during inference.

The quantizer proposed in [10] also has perfectly symmetric quantization levels. Their
quantizer is formulated as (22).

xn = clip
(

x− l
u− l

,0,1
)

(20)

xq =
round

((
2b −1

)
xn
)

2b −1
(21)

QW (x) = 2(xq −0.5) (22)

Because, [10] normalizes weights before quantization in (20), their quantizer is invariant
to any affine transformation applied to the input weights. This behaviour is unique to [10]
and is not shared by any quantizer in CSQ family. However, since the weights distribution
has near zero mean, the difference between [10] and other variants CSQ should be negligible
in practice.

[3] parametrizes and learns the quantization interval. Their quantizer is formulated as
(23).

ηw =
⌊(

clip
(

w
νw
,−1,1

)
+1

)
/2 ·

(
2b −1

)⌉
w̄ =

(
ηw · 1

2b−1 ·2−1
)
·νw

(23)

They do not discuss the quantization levels resulting from their quantizer but their quantizer
behaves same as the quantizer defined in (4).

B Alternatives to CSQ
From the perspective of quantization levels, one can consider the following quantization
schemes Extended Symmetric Quantization (ESQ), on the other hand, uses one more
quantization level to achieve exact zero representation and symmetry; i.e., L = −2b−1 and
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U = 2b−1. However, since ESQ requires more than b-bit precision, it is not feasible for
practical deployment, but included here for comparison. Non-uniform Symmetric Quanti-
zation (NSQ) is same as ESQ without zero representation. NSQ achieves perfect symmetry
with exactly 2b quantization levels, but the step size is not uniform, leading to a completely
different quantizer function and QAT methods. Since NSQ is non-uniform quantization, we
do not consider it for the scope of this paper. Centered Symmetric Quantization (CSQ)
stipulates uniform step size and perfect symmetry between the positive and negative sides,
while compromising on the exact representation of zero (e.g. {−1.5,−0.5,0.5,1.5} for 2-
bit). It can also be represented using integers only by scaling all quantization levels by 2
({−3,−1,1,3} for 2-bit). For the remainder of the paper we focus on CSQ and CLQ, as they
are the most practical.

C Our Training Method
We have employed the method presented in [6] to train the quantization parameters. To
optimize the step size s using gradient descent, we use the following derivative formula.

∂ v̂
∂ s

=


−v/s+ v̇ if −Q < v̇ < Q
−Q if v̇ ≤−Q
Q if v̇ ≥ Q

(24)

Then computing the loss gradient w.r.t. step size is straightforward. Similar to gradient
scaling in [6], the gradient of step size is scaled by factor g = 1/

√
NW 2p, where NW is the

number of weight parameters. The weights are initialized as 2⟨|v|⟩/
√

Q, where ⟨.⟩ represents
the notation for mean of a distribution. Figure 2b shares the gradient of step size parameter
at 2-bit precision. Our training method is based on LSQ [6] but it should be noted that CSQ
can be used with any training method.

D Limitaions of Affine Quantizer
We have defined affine quantizer by [9] in (7). Another variant of affine quantizer has also
been proposed by [1]:

x̄ =
⌊

clip
(

x− z
s

,n, p
)⌉

, x̂ = s · x̄+ z (25)

where n and p are clipping intervals. [1] does not restrict their zero-point to integer values.
This approach can lead to significant hardware overhead. To tackle this problem they propose
the affine quantizer for activations only, in which case zero-point can be implemented simply
as a bias term, since

ŵ · x̂ = (w̄ · sw)(x̄ · sx + z) = w̄x̄swsx + zsww̄︸︷︷︸
bias

(26)

and w̄ is known in advance. This resolves the hardware overhead problem of affine quantiza-
tion for activation. However, the same method cannot be applied to weight because it would
involve pre-computing x̄ in advance, which is impossible.
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Affine quantization for weights still results in some hardware overhead as the the zero-
point of weights quantizer can not be implemented as the bias. This can be shown as:

ŵx̂ = (w̄× sw + zw)(x̄× sx + zx) = w̄x̄swsx + zxsww̄+ zwzx︸ ︷︷ ︸
bias

+ zwsxx̄︸ ︷︷ ︸
overhead

(27)

This is because x̄ can not be pre-computed as it will change with each input. Similarly weight
quantization overhead is shown by [9] as:

y(k, l,n) = swsx conv(w̄(k, l,m;n)− zw, x̄(k, l,m)− zx) (28)

y(k, l,n) = conv(w̄(k, l,m;n), x̄(k, l,m))− zw

K−1

∑
k=0

K−1

∑
l=0

N−1

∑
m=0

x̄(k, l,m) (29)

− zx

K−1

∑
k=0

K−1

∑
l=0

N−1

∑
m=0

w̄(k, l,m;n)+ zxzw (30)

Considering these limitations of affine quantizer we have proposed CSQ as an approxi-
mation of affine quantizer which can be efficiently realized on hardware.

E Derivation of CSQ Hwardware Realization via Affine
Quantizer

Let us first consider the multiplication between two values ŵ, x̂ quantized by affine quantizer.
Here we use relaxed affine quantizer because CSQ cannot be represented by integer zero-
point. The multiplication operation can be computed as follows:

ŵx̂ = ((w̄− zw)× sw)((x̄− zx)× sx) = w̄x̄swsx − zxswsxw̄+ zwzxswsx︸ ︷︷ ︸
bias

−zwsxsxx̄︸ ︷︷ ︸
overhead

(31)

where w̄x̄ can be computed using a standard multiplier without any overhead and zxswsxw̄+
zwzxswsx can be computed in advance and folded into the bias term, causing no runtime
overhead. However, the term zwsxsxx̄ cannot be computed in advance and must result in
runtime overhead.

In Section 3.3 we show that CSQ can be considered as a special case of relaxed affine
quantizer with a specific zero-point value. Based on this, we propose an efficient method to
realize CSQ on standard multipliers in Section 4.1. The method in (9) can be shown for full
convolution layer as:

y(k, l,n) = s̄ws̄x conv(w̄(k, l,m;n), x̄(k, l,m))−0.5× s̄ws̄x

K−1

∑
k=0

K−1

∑
l=0

N−1

∑
m=0

x̄(k, l,m)︸ ︷︷ ︸
overhead

(32)

This method results in marginal overhead but it is significantly lower than that of (relaxed)
affine quantizer because multiplying by 0.5 does not need any logic gate (just wires are
enough) and there is no real-valued parameter unlike relaxed affine quantizer. This method
can be used to realize CSQ on standard multipliers with very small overhead, as demon-
strated by our experiments in Section 5.3.
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Table 5: Comparison of CSQ with affine quantizer using BRECQ on ImageNet.

Accuracy
Network Method 2/32 3/32 4/32

ResNet-18 Full Precision: 71.08
BRECQ 66.60 69.82 70.64

BRECQ-CSQ (ours) 66.93 69.81 70.62
ResNet-50 Full Precision: 77.00

BRECQ 72.16 75.68 76.41
BRECQ-CSQ (ours) 72.24 75.52 76.35

F Additional Experiments

F.1 Post Training Quantization Results (Comparison with BRECQ)

BRECQ [11] uses affine quantizer with integer zero-point, which extends the linear quantizer
in a different direction than our CSQ. Thus it is very interesting to see how our method com-
pares with BRECQ. Note that integer zero-point requires some additional hardware overhead
whereas CSQ does not. At the same time, the two schemes are orthogonal in the sense that
one can combine both schemes, viz. integer zero-point and CSQ, so that zero-point take
any integer or half-integer value, at the cost of some hardware overhead. Here we compare
only CSQ vs. BRECQ, but not the combination. Since we have proposed CSQ for weight
quantization, we only quantize the weights in BRECQ experiments.

To implement CSQ we simply fix the zero point value to CSQ which is shown as ZCSQ in
(8). The shared results may be different from reported results. The results have been repro-
duced using the officially shared code. We share our results on ResNet-18 and ResNet-34.
We used channel-wise quantization and all the hyper-parameters are same as shown in [11].
Table 5 shows the experimental results using BRECQ on ImageNet data. It can be seen that
at 2-bit precision CSQ outperforms affine quantizer. This is especially interesting because
unlike affine quantization, CSQ does not incur any hardware overhead. At 3 and 4-bit pre-
cision, affine quantizer gives better performance. However, CSQ also provides competitive
results. This shows that CSQ is a very strong approximation of (relaxed) affine quantizer.

½  -½  -1½  1½  

P (0 ≤ X < 1) = 0.25 

X

Figure 5: With 2-bit CSQ, quantization levels (shown on the x-axis) can resemble Gaussian
distribution while, at the same time, real-valued weight data are also uniformly mapped to
them (scale parameter s is omitted for brevity).
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Table 6: Comparison of CSQ vs. CLQ using knowledge distillation training on ImageNet.

Top-1 Accuracy @ Precision
Network ResNet-18

Full Precision: 70.52
Precision (W/A) 2/2 3/3 4/4

CLQ (LSQ) + Knowledge Distillation 66.99 69.77 70.63
CSQ + Knowledge Distillation (ours) 67.24 69.90 70.56

F.2 Additional Experiments Using Knowledge Distillation

To further demonstrate the generalization-ability of CSQ, we conduct some experiments with
knowledge distillation [8] loss. We use LSQ [6] for training the quantization parameters and
show that CSQ performs superior to CLQ at low precision even when we use advanced train-
ing methods such as knowledge distillation over state-of-the-art quantization-aware training
method.

The experimental methodology and training setups are the same as described in Sec-
tion 5.1, except that we use a weight decay of 0.25e-4 and knowledge distillation loss for all
experiments. For knowledge distillation loss we set temperature as 1 and give equal weight
to the standard loss and the distillation loss following [6]. Our experimental results in Ta-
ble 6 show that at extremely low precision, i.e., at 2- and 3-bit, CSQ outperforms CLQ. This
is consistent with experimental results in Table 3.

G Why CSQ is always better than CLQ at 2-bit

In the weight quantization error experiment of Section 3.1, optimizing for minimum quanti-
zation error faces the challenge of maximizing the utility of limited quantization levels. The
utility is maximized (i) if each quantization level has equal number of real values mapped
to it, in the same way as the Lloyd-Max quantization [12] is optimal. Also it can be helped
a lot (ii) if the quantization levels have the same distribution as the underlying data. In
other words, for the first objective the underlying data (when mapped to quantization levels)
should be distributed as uniformly as possible, while for the second objective the distribution
of quantization levels should resemble that of the underlying data (e.g., Gaussian). This usu-
ally creates conflicting requirements, but not in the case of 2-bit CSQ. At 2-bit, CSQ has only
three quantization thresholds, {−1,0,1}, and therefore can satisfy both requirements simul-
taneously: (i) real-valued weight data are uniformly distributed across quantization levels,
and at the same time, (ii) quantization levels follow Gaussian (or any symmetric) distribution,
as illustrated in Figure 5. Note that this is not possible for 2-bit CLQ, as in other precision for
either CLQ or CSQ, which explains why CSQ always shows better performance than CLQ at
2-bit. From the figure, the scale parameter can be determined as s = Φ−1(0.75), where Φ is
the CDF of standard normal distribution, since P(0≤X < s)= 0.25 when X ∼N(0,1)). Also
our experimental results confirm that indeed real-valued weight data are mapped uniformly
to 2-bit CSQ quantization levels as shown in Figure 6.
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Figure 6: How real-valued weight data are mapped to CLQ vs. CSQ after training ResNet-18
on ImageNet.

H Exhaustive Search Method for Quantization Error
Experiments

We present quantization error experiments in Section 3.1. To find the step size that minimizes
the Quantization Error we use an exhaustive search method. Our exhaustive search method
is very similar to the method used by [6] for their quantization error experiments. The
exhaustive search goes as follows. First, we initialize step sizes as:

s0 =
⟨|w|⟩

2p −1
(33)

where w represents full precision weights,⟨.⟩ represents the mean operation, and p is the
bit-width. Then for the search space S = {0.01s0,0.02s0,0.03s0, · · · ,5s0}, we exhaustively
find the value of s ∈ S that minimizes the target quantization error metric. This helps us find
the minimum quantization error using CLQ and CSQ, for any given bit-width. Experimental
results and analysis has been presented in Section 3.1.

I More about Zero-point
The difference between zCLQ and zCSQ is constant at 0.5 (see (8)) while the possible range of
values that can be taken by the quantizer grows exponentially with b. Thus we can give the
percentage difference between zero-points of CLQ vs. CSQ relative to the entire quantization
range by:

D =
zCLQ − zCSQ

2b ×100 =
1

2b+1 ×100 (34)

This equation implies that D decreases as we increase the precision. For example, at 2-bit
precision, D is 12.5% but at 4-bit precision, D reduces to mere 3.125%. This shows that at
higher precision the difference between CSQ and CLQ becomes negligible compared to the
entire distribution range and they should provide similar performance.
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J Exact Zero Representation vs. Perfect Symmetry

Any linear quantization to b-bit precision results in 2b quantization levels. Therefore, inclu-
sion of zero among the quantization points, naturally results in an asymmetry in the number
of positive and negative quantization levels. While exact representation of zero may be im-
portant due to common operations like zero padding [9], it is also true that the asymmetry
among positive and negative quantization levels grows large as precision becomes low. Thus
one of our aims in this paper is to explore the trade-off between exact zero representation
and perfect symmetry in the context of weight quantization of neural networks.

J.1 Zero Representation

CSQ does not provide an exact representation for zero. Instead, zero or values slightly less
than zero are rounded to −0.5 while values slightly greater than zero are rounded to 0.5 (be-
fore scale factor). Despite this it has been shown in Section 3.1 that CSQ can reduce quan-
tization error compared with CLQ. Furthermore, our experimental results have also shown
superior performance with CSQ. This serves as an evidence that exact zero representation is
not critical for weight quantization, especially at low precision (< 4 bits).

J.2 Zero Padding

Zero padding is needed for activation only, not for weight. In case, if zero padding were
used for weight as well, we can simulate the exact effect of rounding zeros during QAT, and
adjust weight accordingly. So it would not contribute to any performance degradation.

Now, vector and tensor processors (e.g. TPU) must process an array of values together,
and may “fill” some elements with zeros as needed. This zero filling is needed for both
weight and activation. For CSQ weight, inexact zero representation may introduce an error or
discrepancy between algorithm and realization. This error can be eliminated or minimized,
depending on hardware dataflow, by resetting corresponding activation values to zeroes or
filling with both +0.5 and −0.5.

J.3 Why Propose CSQ for Weight Only

Activation frequently involves zero padding. Therefore, activation quantization strictly de-
mands exact zero representation to support zero padding. Furthermore ReLU is frequently
used activation function which results in unsigned activation distribution, whereas CSQ can
only be used for signed distributions. Therefore, we recommend that using CSQ for weight
quantization and CLQ for activation quantization, which provides the best performance with
no hardware overhead.
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