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Abstract

This work presents an empirical exploration of temporal granularity in self-supervised
video representation learning. While state-of-the-art methods commonly enforce the
learned features to be temporally-persistent across the whole video, we argue that this
objective may not be suitable for all video tasks. To reveal the impact of temporal gran-
ularity, we propose a simple unified framework to learn features from same unlabeled
videos with varying granularities from temporally fine-grained to persistent, by only ad-
justing one coefficient. We conduct a comprehensive empirical study covering a variety
of classic and emerging video benchmarks and find video-level understanding tasks pre-
fer temporally persistent features while temporal understanding inside one video favors
fine-grained features. The flexibility of our framework gives rise to competitive or state-
of-the-art performance, even outperforming supervised pre-training in a few cases. Code
will be available at https://github.com/tensorflow/models/tree/master/official/.
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Video Feature

Event Boundary Detection Video-Level Recognition

“Attending Housewarming Party”

Figure 1: Illustration of tasks requiring different temporal granularities on the same video. Event boundary detec-
tion requires temporally fine-grained features, while video-level recognition prefers temporally persistent features.

1 Introduction

Learning visual representations from abundantly available unlabeled videos is of crucial
importance in computer vision. Thanks to the breakthrough in image self-supervised learn-
ing [9, 13, 24, 28], a series of recent works extended similar ideas to video [18, 48, 49]. The
success of these methods largely depends on a seemly counter-intuitive objective: enforcing
temporal persistency across an entire video [18, 48, 49].

Despite the strong performance on commonly used video benchmarks (e.g., action recog-
nition [32, 35, 61]), we argue that this temporal persistency objective is not always prefer-
able, especially on tasks that require fine-grained temporal understanding inside a video.
Consider an example in Fig. 1. Event boundary detection calls for temporally fine-grained
features so that the model is aware of the temporal content shifts within the video. In contrast,
video-level event recognition requires the model to robustly predict the target label based on
some sampled clips; therefore, temporally persistent/coarse-grained features are more desir-
able. How can we develop a self-supervised video representation learning framework that
accounts for both fine-grained and persistent temporal information?

We try to answer the above question by considering temporal granularity. The concept of
temporal granularity has been studied in speech recognition [21] and time series analysis [5,
15], but is rather under-explored in recent video representation learning research. In this
paper, we aim at learning a set of features with coarse to fine temporal granularities from
the same videos to understand the impact of temporal granularity. To achieve this goal, we
propose TeG, a framework to explore Temporal Granularity via the combination of fine-
grained and persistent temporal learning, as illustrated in Fig. 2.

In TeG, we randomly sample a long clip from a video and a short clip that lies inside
the time duration of the long clip. We then feed them into a video encoder without temporal
average pooling, maintaining their temporal resolution. The resultant features are projected
into two separate embedding spaces with different contrastive learning objectives.

In the fine-grained temporal learning space, we split the projected features along the
temporal dimension into a list of temporal embeddings, each represents the feature of a short
time duration. We apply a dense contrastive objective to maximize the similarity between
corresponding temporal embeddings from two clips, making the learned features to be tem-
porally discriminative within a clip.

In the persistent temporal learning space, we directly apply a global average pooling to
generate the global embedding for both the short clip and the long clip. The training objective
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here encourages global temporal persistency by pulling together two embeddings, similarly
to what has been used in existing frameworks [18, 48, 49].

TeG optimizes both fine-grained and persistent temporal learning objectives and offers a
flexible solution to learning features of different temporal granularities by adjusting the loss
weight coefficient between the two objectives.

We conduct comprehensive experiments on commonly used video benchmarks together
with two emerging benchmarks for understanding events in short videos: VidSitu event clas-
sification [52] and Kinetics-GEBD (generic event boundary detection) [56]. We find that
tasks that require fine-grained temporal understanding inside one video like VidSitu event
classification and Kinetics-GEBD prefer temporally fine-grained features. Bringing in tem-
porally persistent features hurt the performance, see Tab. 1. On the contrary, tasks of video-
level classification are generally in favour of temporally persistent features, see Tab. 2 and
Tab. 3. Features learned from our unified framework achieve very competitive performance:
67.8% on Kinetics-400 linear evaluation, 94.1% on UCF101, 71.9% on HMDB51, 71.4%
F-1 score on Kinetics-GEBD, 28.7% mAP on AVA-Kinetics.

2 Related Work

Unsupervised video representation learning. In an early work, Srivastava et al. [62] pro-
pose to predict the future based on frame features. More recent works learn from raw videos
by predicting motion and appearance statistics [66], speed [7, 67] and encodings [25, 27, 43].
Aside from future prediction, it is common to learn from pretext tasks like sorting frames or
video clips [20, 33, 37, 70] and rotation [31]. Recently, constrastive learning based meth-
ods [6, 18, 39, 48, 49, 60, 65, 68] significantly reduce the gap with supervised learning
by pulling together features of clips from the same video. Furthermore, videos contain-
ing multimodal signals make it possible to learn from speech or language [44, 63, 64], au-
dio [3, 4, 34, 46], optical flow [26], or combinations of modalities [1, 2, 49] and tasks [47].
Different from existing work, we introduce temporally fine-grained features into the video
contrastive learning framework and study its impact on various downstream tasks.

Fine-grained temporal video understanding. We first discuss two representative tasks:
temporal localization and segmentation. Commonly used temporal localization benchmarks
(e.g., ActivityNet [8], THUMOS [30], HACS [73]) are constructed based on specified action
classes. As a result, most temporal localization methods [40, 41, 42, 57, 58, 74] contain a
temporal proposal module to simply treat video segments that do not belong to pre-defined
classes as the background. Temporal segmentation methods [17, 36, 51] typically divide a
video into segments of actions, or sub-actions [53, 54]. But still, those methods can only
predict boundaries of pre-defined classes, not generic boundaries. We choose the recently
proposed Kinetics-GEBD [56] dataset to verify whether TeG is able to learn temporally fine-
grained features that can be used for generic event boundary detection. We also benchmark
our method on AVA-Kinetics [38] for spatiotemporal action localization. In addition, movies
could also provide rich content for fine-grained temporal video understanding. However,
temporal movie understanding methods [12, 29, 45] typically focus on shots (sharp transi-
tions due to video editing) and can be accurately localized using low-level visual cues [59].
To benchmark TeG in movie scenes, we adopt the recently proposed VidSitu [52] dataset, in
which each short video is temporally annotated with 5 events with natural transitions.
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Total Loss:

Long 
Clip

Short 
Clip

Video 
Encoder

Projection 
Head gf(.)

Projection 
Head gp(.)

Global 
Average 
Pooling

AttractAttractAttract

 Embedding Space after gf(.)
Learning Temporally Fine-Grained Features
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Figure 2: Overview of TeG framework. We randomly sample a long clip from a video and a short clip that lies
inside the duration of the long clip. We then project encoded features into two separate embedding spaces, one for
learning temporally fine-grained features and the other for temporally persistent features.

3 Method

An overview of our framework is shown in Fig. 2. We next introduce each component.
Temporal sampling. Given a video of N frames, V = {v1,v2, · · · ,vN}, we adopt a long-
short sampling strategy, where we first sample a long clip l randomly from the whole video,
and then a short clip s inside the time duration of the long clip. The long clip provides rich
spatiotemporal context, and the short clip in it guarantees that each temporal embedding in
the short clip has a corresponding temporal embedding in the long clip at approximately the
same start and end time. The ablation on sampling strategy is in Tab. 5(a).
Spatial data augmentation. After obtaining the short clip s and long clip l, we adopt the
common practice in recent video contrastive learning [2, 3, 48] of applying spatial data aug-
mentations including random resizing and cropping, color jittering, and Gaussian blurring.
Video encoder. We adopt the 3D-ResNet-50 (R3D-50) backbone used in [48] and remove
the final temporal average pooling to maintain the temporal resolution of features. We ap-
ply two projection heads: gp(·) for persistent temporal learning and g f (·) for fine-grained
temporal learning. They project representations into separate embedding spaces with differ-
ent contrastive objectives. In the persistent learning space, we obtain embedding zs

p from the
short clip s and zl

p from the long clip l by {zs
p,zl

p}= {gp( f (s)),gp( f (l))}; in the fine-grained
learning space, we have {zs

f ,z
l
f }= {g f ( f (s)),g f ( f (l))}.

Our approach maintains a simple form of video contrastive learning where we do not use
separate encoders for different clips [49], nor do we use a momentum encoder [18], predictor
head [18, 68] and symmetric losses [49]. Extensive experiments in Sec. 5 demonstrate the
effectiveness of this simple design.
Temporal aggregation. For temporally persistent learning, as a common practice [18, 48],
we directly apply a global average pooling to get a single vector representing the whole clip,
resulting in zs

p,zl
p 2R1⇥c, where c is the number of output channels from the projection head.

For temporally fine-grained learning, we design a configurable local aggregation strategy to
optionally aggregate consecutive local temporal embeddings to reduce training complexity.
We denote the number of frames in short clip s and long clip l as Ts and Tl . The aggregation
performs average pooling on every consecutive Ts

n frames in the short clip and Tl
m frames in

the long clip, resulting in aggregated outputs of zs
f 2 Rn⇥c and zl

f 2 Rm⇥c. When n = 1 and
m = 1, it reduces to temporal persistent learning. When n = TS and m = TL, it conducts dense
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temporal contrastive learning on frame-level embeddings. Fig. 5(b) ablates on the different
choices of n and m. We use zs

f [i] to index the i-th dimension of zs
f and zl

f [ j] to index the j-th
dimension of zl

f , where 1  i  n and 1  j  n.
Fine-grained temporal learning. We aim to obtain temporally fine-grained features by
maximizing the feature similarity between corresponding embeddings of the short and the
long clip. The corresponding embeddings should be close in time and we rely on the frame
index to find them. After temporal aggregation on a few consecutive frames, we define
the index of a certain embedding zs

f [i] as the average frame index of all aggregated frames,
notated as I(zs

f [i]). We find zs
f [i]’s nearest corresponding embedding zl

f [ j] in the long clip
by: j = argmin j |I(zs

f [i])� I(zl
f [ j])|. (zs

f [i],z
l
f [ j]) has the closest temporal distance and it is

considered as the positive pair. The fine-grained temporal learning loss can be written as:

L f =�1
n

n

Â
i=1

log
exp(zs

f [i] · z
l
f [ j]/t)

exp(zs
f [i] · z

l
f [ j]/t)+ Â

k�f
exp(zs

f [i] · k
�
f /t))

, (1)

where k�f represents all dense embeddings of long clips from other videos after temporal
aggregation in the fine-grained temporal learning space and t is the temperature.
Persistent temporal learning. Recall that we have embeddings zs

p,zl
p 2 R1⇥c in the tem-

porally persistent learning space. (zs
p,zl

p) is considered as the positive pair and (zs
p,k�p ) as

negative pairs, where k�p represents all global embeddings from long clips of other videos in
the embedding space. The persistent temporal learning loss can be written as:

Lp =� log
exp(zs

p · zl
p/t)

exp(zs
p · zl

p/t)+ Â
k�p

exp(zs
p · k�p /t)

. (2)

For simplicity, we use the same temperature t for both L f and Lp.
Total loss. The total loss is a weighted sum of fine-grained and persistent learning loss:

L= aL f +(1�a)Lp, (3)

where the weight coefficient a 2 [0,1] is used to control the temporal granularity of the
learned features. When a is close to 0, we intend to learn temporally persistent features
with only Lp in the loss. With the increasing of a , we obtain more temporally fine-grained
features. An ablation regarding the effect of a on two datasets is presented in Fig. 4.

4 Evaluation

We describe how we evaluate our method on two new datasets VidSitu [52] and Kinetics-
GEBD [56]. See Sec. 5 for the evaluation on other 4 commonly used datasets, including
Kinetics via linear probing and various downstream tasks via fine-tuning.
Event classification. VidSitu [52] focuses on understanding the relationship of events in
movie videos. Each video in VidSitu is 10-second long and is divided into 5 consecutive
non-overlapping events. Each event is annotated with a verb to describe the most salient
action. The baseline provided by the original authors is to first cut the video into 5 events
according to the annotated boundaries and then perform classification for each event. In
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method backbone acc.

Supervised Train from
scratch [52]

I3D 31.2
I3D + NL 30.2

R3D-50 + NL 33.1
SlowFast + NL 32.6

Unsupervised
CVRL [48] R3D-50 28.3

TeG-PS R3D-50 28.3
TeG-FG R3D-50 31.1

method external data finetuning F1 score
SceneDet [11] - % 27.5
BMN-SE [41] IN + THUMOS % 49.1

TCN [36] IN % 58.8
PC [56] IN X 62.5

CVRL [48] - X 69.1
TeG-PS - X 69.9
TeG-FG - X 71.4

(a) Event classification on Vidsitu (b) Event boundary detection on GEBD

Table 1: In (a) event classification on Vidsitu, NL indicates for non-local block [69]. In (b) event boundary
detection on Kinetics-GEBD, IN represents ImageNet supervised pre-training and THUMOS means additional
supervised training on THUMOS [30]. TeG-FG with fine-grained temporal learning shows superior performance.

our case, we directly apply our method on raw videos in VidSitu without using any labels
in pre-training. Since the transition between events is usually natural and continuous, we
consider VidSitu a good benchmark to evaluate whether our method can learn more fine-
grained temporal features than video-level persistent learning methods (e.g., [48]). We adopt
linear probing during the evaluation, where we use their event labels to train a linear classifier
on top the frozen backbone to quantify the performance of the learned representations.
Generic event boundary detection. Kinetics-GEBD [56] annotates Kinetics-400 videos
with fine-grained event boundaries based on human perception. Each video receives around
five annotated temporal boundaries. A detection is considered correct when its temporal
distance with a ground truth is less than 5% of the total video length. We use a 1D slid-
ing window detection method, following the spirit of classic object detection methods like
DPM [19]. We first pre-train our backbone without using any annotations. We then add
a binary classifier on top of the pre-trained backbone to predict whether a clip contains a
boundary or not. Similar to object detection [23, 50], we fine-tune the model end-to-end to
benchmark the performance of our learned features.

5 Experiments

As we have introduced that our framework is flexible at learning features with varying
granularities, we mainly adopt two representative settings: 1) a = 0.0 for persistent temporal
learning only and we call this method TeG-PS, where PS represents “persistent”. 2) a = 0.9,
in which the fine-grained temporal learning loss is the dominant loss and we denote this
method as TeG-FG, where FG represents “fine-grained”. We also provide an in-depth study
for more different values of a on VidSitu and Kinetics in Fig. 4.

5.1 Event Classification

We conduct experiments on VidSitu [52], which contains 23.6k training and 1.3k vali-
dation videos with 1560 verb classes. During pre-training, we sample a 32-frame long clip
with a stride of 4 and a 16-frame short clip with a stride of 2. Temporal aggregation param-
eters are set as m = 4 and n = 1 (ablation study in Fig. 5(b)). We pre-train our model from
scratch for 200 epochs on unlabeled raw videos. During the linear evaluation, we train a
linear classifier with an initial learning rate of 4.0 for 100 epochs. Additional details can be
found in Appendix B.1.

We show TeG’s performance on VidSitu in Tab. 1(a). The supervised methods directly
train models from scratch on the training set, using labels for each event clip cut from raw
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videos. The unsupervised methods perform pre-training on raw videos from scratch without
using any labels and then conduct linear evaluation. We adopt CVRL [48] as an important
baseline since it is a representative method that enforces temporal persistency across the
whole video. Despite different settings, TeG-PS actually achieves identical performance with
CVRL, indicates the performance of temporally persistent features can be quite similar on
VidSitu. By contrast, TeG-FG equipped with temporally fine-grained pre-training improves
the performance by 2.8%. Furthermore, the performance TeG-FG is on par with supervised
methods using I3D as the backbone. This result provides a solid evidence that temporal
persistent learning is not the optimal solution on this event classification benchmark.

We also provide a visualization of feature similarity in Fig. 3. For each event inside the
same video, we sample a clip in the middle and feed it into the trained video encoder to get
the feature vector. We then calculate the cosine similarities between all pairs of features. For
Fig. 3(a), each event has a different label and we observe the fine-grained features are much
more discriminative with siginificantly lower similarity scores between different events. As
in Fig. 3(b), both features show similar scores within the same label (smoke and talk), while
the fine-grained features are more discriminative between the two labels. We provide more
visualization examples in Appendix C.

5.2 Generic Event Boundary Detection

We perform experiments on Kinetics-GEBD [56], which contains 20k out of 240k Kinetics-
400 [32] training videos and all 20k validation videos. We sample a 16-frame long clip and
a 8-frame short clip. We pre-train our model from scratch for 200 epochs and then fine-tune
the model with the annotated boundaries for 30 epochs. Other training and evaluation hyper
parameters follow the setting of original authors [56] and we would cover more details in
Appendix B.2.

TeG’s performance on Kinetics-GEBD is presented in Tab. 1(b), where we report results
using their strictest temporal threshold of 0.05 to emphasize on the importance of precise
boundary detection. We next briefly introduce a few representative methods for this bench-
mark. SceneDet [11] is a widely-used library for detecting shot changes. BMN-SE [41] is a
state-of-the-art method for action proposal generation and here the start and end of each pro-
posal are considered as event boundaries. TCN [36] is a classic action boundary detection
method. PC [56] is the state-of-the-art method on this benchmark provided by perform-
ing pairwise classification around event boundaries. We group these methods by the external
data they pre-train on and whether they fine-tune or keep the backbone frozen and fine-tuning
methods achieve much better performances. Compared with PC which relies on ImageNet
supervised pre-training, CVRL and TeG can directly pre-train on the training videos without
using labels and external data for supervision. We draw a similar observation with event clas-
sification that TeG-FG with temporally fine-grained learning outperforms methods enforcing
temporal persistency like CVRL and TeG-PS.

5.3 Kinetics Linear Evaluation

We pre-train our model from scratch for 800 epochs on Kinetics-400 [32] with the same
parameters with event classification. We perform linear evaluation to directly quantify the
learned feature quality, following [18, 48]. As shown in Tab. 2, TeG-FG obtains 65.0%
top-1 accuracy which trails behind some state-of-the-art methods including CVRL [48] and
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(a) yell, watch, point, kneel, writhe (b) smoke, smoke, talk, talk, talk

Figure 3: Visualization of feature similarity. Top row shows the center frame of input clip. The left matrix is the
similarity of temporally persistent features and the right one comes from temporally fine-grained features. Ground
truth labels are in subcaptions. Video (a) has different labels for each event, while (b) only has two distinct labels.

method backbone pre-train acc.dataset epoch frame FLOPs (G)
SimCLR [48] R3D-50 K400 - - - 46.8
ImageNet [48] R3D-50 IN - - - 53.5
SeCo [72] R-50 IN† + K400 400 - - 61.9
CVRL [48] R3D-50# K400 800 16+16 ! 8+8 91.2 66.1
rBYOL (r=2) [18] R3D-50 K400 800 8+8 83.5 66.2
rMoCo (r=2) [18] R3D-50 K400 800 8+8 83.5 67.4
rMoCo (r=2) [18] R3D-50 K400 200 16+16 167.0 67.6
rBYOL (r=4) [18] R3D-50 K400 200 16+16+16+16 334.0 71.4

TeG-FG R3D-50# K400 800 16+32 ! 8+16 136.4 65.0
TeG-PS R3D-50# K400 800 16+32 ! 8+16 136.4 67.8

Table 2: Linear evaluation on Kinetics-400 action recognition. We list the number of frames and FLOPs in
pre-training stage. We report total FLOPs considering all clips instead of just one clip. R3D-50# means the first
layer conducts an additional 2⇥ temporal downsampling to approximately reduce the computation to half (shown
in frame). IN† denotes a MoCo-v2 [14] checkpoint pre-trained on ImageNet is used as backbone initialization.

rMoCo [18]. TeG-PS achieves 67.8%, an improvement of 2.8% over TeG-FG. This is a com-
petitive performance on Kinetics linear evaluation without using multi-clip sampling [18] in
pre-training. These results verify that temporal persistency in the key to obtain strong per-
formance on Kinetics. Our primary goal here is to investigate the difference between tempo-
rally persistent and fine-grained features with strong baselines, not solely competing for best
numbers. We believe the performance of TeG-PS could be additionally boosted by multi-clip
sampling (e.g. r = 4 of [18]) as it further enhances temporal persistency. Different from [18]
reporting only one clip, we report the total FLOPs for all clips used during pre-training in
Tab. 2,. Our R3D-50 also has an additional 2⇥ temporal downsampling in the first layer,
reducing the frames to 8+16 in the backbone after the first layer. We offer a more detailed
discussion in Appendix A.

5.4 Downstream Action Recognition and Localization

For downstream action recognition, we fine-tune the same pre-trained checkpoint used in
Kinetics linear evaluation on UCF101 [61] and HMDB51 [35], which are classic benchmarks
for evaluating self-supervised video representation learning.

We report TeG’s performance on in Tab. 3(a, b). On UCF, TeG-PS achieves a competitive
performance of 94.1% with fine-tuning and 91.1% with linear evaluation. On HMDB, TeG-
PS achives 71.9% with fine-tuning and 64.2% with linear evaluation, surpassing CVRL[48]
by 4.0% and 5.9%, respectively. TeG-FG does not help on these datasets.
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method pre-train data UCF HMDB
MotionPred [66] K400 61.2 33.4
3D-RotNet [31] K400 64.5 34.3
ST-Puzzle [33] K400 65.8 33.7
ClipOrder [70] K400 72.4 30.9
DPC [25] K400 75.7 35.7
PacePred [67] K400 77.1 36.6
MemDPC [27] K400 78.1 41.2
SpeedNet [7] K400 81.1 48.8
CoCLR [26] K400 87.9 54.6
DynamoNet [16] YT8M 88.1 59.9
SeCo [72] IN† + K400 88.3 55.6
CVRL [48] K400 92.9 67.9
MCL [39] IN† + K400 93.4 69.1
rMoCo (r=4) [18] K400 93.6 -
TeG-FG K400 93.6 70.7
TeG-PS K400 94.1 71.9

method pre-train data UCF HMDB
MemDPC [27] K400 54.1 30.5
CoCLR [26] K400 77.8 52.4
CVRL [48] K400 89.8 58.3
TeG-FG K400 88.9 60.7
TeG-PS K400 91.1 64.2

(b) Linear evaluation on UCF/HMDB

method pre-train data mAP
Sup.

pre-train
R3D-50 K400 19.8
I3D [10] ImageNet 22.9

Unsup.
pre-train

CVRL [48] K400 24.1
VFS [71] K400 25.9
TeG-FG K400 27.7
TeG-PS K400 28.7

(a) Fine-tuning on UCF/HMDB (c) Fine-tuning on AVA-Kinetics

Table 3: (a, b) Downstream action recognition on UCF101 and HMDB51. TeG-PS shows competitive perfor-
mance in fine-tuning and linear evaluation. IN† ImageNet data is used. (c) Spatiotemporal action localization on

AVA-Kinetics. TeG-PS outperforms its supervised pre-training counterpart by 8.9% mAP using the same R3D-50
backbone, as well as state-of-the-art unsupervised pre-training methods.

AVA-Kinetics [38] provides an important spatiotemporal action localization benchmark
for evaluating the learned video features. We use our pre-trained backbone to extract features
from the person detections provided by an off-the-shelf detector [75], following the practice
in recent work [22, 38]. The results are shown in Tab. 3(c), where TeG-PS achieves 28.7%
mAP, outperforming supervised pre-training on Kinetics using the same R3D-50 backbone
by a large margin of 8.9% mAP. TeG-PS also shows superior performance when compared
with other state-of-the-art unsupervised pre-training methods like CVRL and VFS [71].
TeG-FG is 1.0% mAP lower than TeG-PS. We consider it is reasonable since this task still
requires video-level understanding within the proposed regions and learning temporally fine-
grained feature across different timestamps inside the video should not be helpful in this case.

6 Ablation Study

We conduct ablation studies on a few key parameters in our proposed method. We use
linear evaluation on VidSitu event classification to justify the performance on temporally
fine-grained task and linear evaluation on Kinetics to represent video-level classification
task. All experiments are conducted with 200 epochs of pre-training.

Loss weight. Recall that in Equation 3, we propose to use a weight coefficient a to balance
the learning of fine-grained and persistent loss. Intuitively, larger a would emphasize more
on temporally fine-grained features and suppress the temporal persistency. We ablate the
impact of a in Fig. 4. On VidSitu (Fig. 4(a)), we observe that a larger a generally yields
better performance as expected except a performance drop when a increases from 0.9 to 1.0.
This suggests that completely discarding the temporally persistent learning is not optimal.
This is also the reason why we set a as 0.9 instead of 1.0 in TeG-FG. On Kinetics (Fig. 4(b)),
we see a consistent drop on the performance as a becomes larger. The reverse trend of
performance further enhances our claim that different video tasks require features of different
temporal granularities to achieve the best performance. Since we find bringing in temporally
fine-grained features is harmful to Kinetics, we focus on VidSitu for the following ablation
studies on parameters of temporally fine-grained learning.
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(a) VidSitu event classification (b) Kinetics action recognition

Figure 4: Ablation on loss weight a . Performance of features with different granularities specified by a show
opposite trends on VidSitu and Kinetics.

clip \ sampling Random Contained
Short - Short 27.4 15.2
Long - Short 26.9 31.1

(a) Comparison between different sampling strate-
gies. The proposed sampling of a long clip and a
containing short clip performs the best. (b) The choice of n and m in temporal aggregation.

Figure 5: Sampling strategy and temporal aggregation. Results are on VidSitu event classification.

Sampling strategy. The proposed sampling strategy requires: 1) two clips to be asymmetric
and 2) the short clip being contained within the time duration of the long clip. We ablate on
these two design choices in Fig. 5(a). When two clips are both short, random sampling is
identical to CVRL [48] and contained sampling losses the diversity in temporal context, thus
resulting in poor performance. When two clips are asymmetric, random sampling still does
not perform well since the corresponding embeddings between the two clips are inaccurate
in the cases that two clips do not have much overlap with each other.
Temporal aggregation. The temporal aggregation parameters m and n determine how dense
we want our fine-grained learning to be. We try different combinations of m and n and
present their performances in Fig. 5(b). We choose m = 4,n = 1 as our default setting due to
the simplicity and strong performance.

7 Conclusion

This work studies the impact of temporal granularity in self-supervised video represen-
tation learning. We propose a flexible framework named TeG to learn video features of
specified temporal granularity and observe that different video tasks require features of dif-
ferent temporal granularities. This insight leads to very competitive results on six video
benchmarks. We hope our study can inspire research in video self-supervised learning.
Limitations. From our experiments, we find temporally fine-grained feature performs better
on tasks like event classification and boundary detection, while temporally persistent feature
shows great advantage on video-level action recognition and spatiotemporal action localiza-
tion. Manual effort is still needed to find the best recipe for different tasks. Future work could
extend TeG to learn a pyramid of representations with coarse to fine temporal granularities
from unlabeled videos. The learned representations can therefore be easily transferred to
downstream tasks in a more adaptive way.
Acknowledgments. This work was supported in part by the Pioneer Centre for AI, DNRF
grant number P1. We would also like to thank the TensorFlow Model Garden team for their
infrastructure support and Tsung-Yi Lin for providing valuable feedback.
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