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temporal locations of the whole video.
e This ObjeCtive is not always preferable: Embedding Space after g,(.) ______________Er;bie;d;g_s_p;c;;ﬁ_er_g_(_) _______________ contrastive |earning for tempora|
m The strong performances are only on common discriminative features.

i Learning Temporally Fine-Grained Features E E LearnlngTemporallyPerslstentFeatures :
i : it ekt fl | XaCbu b DR | ) .
video benchmarks of action recognition. i &!ﬂ i fl i S LI, - T 4 Coarse-grained space using

n e Temporal sampling:' _
m fieado/) m Long-short sampling of two clips.
e Two embedding spaces:

m Fine-grained space using dense

u The_ feature learned ignores the changmg nature il T B global contrastive learning for
in videos, may be not suitable for all video tasks. M i . coarse features.
Contribution
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