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A Discussion on Experimental Results

Two closest works to our TeG setup are CVRL [48] and rMoco/BYOL/SwAV [18],
where a deep 3D-ResNet-50 is adopted as the backbone and a contrastive loss is used as the
objective. However, the code and models of [18] are not available at the time of submis-
sion. We tried to reproduce their models but found it difficult and expensive to match all
their results, mainly due to the huge computational costs required with its proposed multi-
clip sampling strategy on Kinetics. Furthermore, there are four variants of their models
(SimCLR, MoCo, BYOL, SwAV) with different multi-clip settings (r = 1,2,3,4), making
it even harder to reproduce. Since CVRL [48] is a concurrent work of [18] with a similar
objective and open-sourced, we choose to follow CVRL’s settings on architecture and hyper-
parameters. Tab. 4 shows the detailed comparison of 3D-ResNet-50 backbones used in two
works. Our primary goal here is to investigate the difference between temporally persistent
and fine-grained features with strong baselines, not solely competing for best numbers.

For experiments, we try our best to incorporate the results from [18] and [48] as much
as possible towards a fair comparison. We list three factors in Tab. 3 (pre-train epoch, frame
and FLOPs) and offer more discussions here.

The recent state-of-the-art self-supervised learning methods on the image domain [9, 13,
24, 28] heavily rely on the accuracy to verify the effectiveness of proposed algorithm. Due
to the difficulty of direct comparison between different methods, training time and training
computation are hardly listed in an explicit way. As in our case, we try to incorporate these
factors into comparison.

Firstly, for pre-train epoch, we argue that it is not directly comparable between different
methods. For example, [18] finds that increasing pre-train epoch from 400 to 800 epochs,
leads to identical performance for rMoCo, and detrimental for rBYOL and rSimCLR.
And rSwAV is the strongest performer for short training of 50 epochs. A few potential
reasons affecting the convergence speed could be: 1) using a large memory bank (rMoCo),
2) using a momentum encoder (rMoCo, rBYOL), 3) using negative examples (rSimCLR,
rMoCo).

Secondly, we also list the pre-train frames as a reference since it directly affects the
pre-train FLOPs.

Lastly, for the pre-train FLOPs, while [18] provides the FLOPs for a single clip when
they benchmark on different backbones from S3D to R3D, we argue it is important to re-
port the FLOPs of all clips when compare on the same backbone like R3D. For example,
the performance of rBYOL(r = 1) achieves 60.6% on Kinetics-400, while rBYOL(r =
4) achieves 68.9%. For these two models, the FLOPs of a single clip remain the same,
while rBYOL(r = 4) have 4⇥ FLOPs when we calculate the total FLOPs of all clips. Thus
we consider the total FLOPs as a better metric for reflecting the actual computation for a
method.

For results in Tab. 3, we achieve a competitive performance (67.8%) with a moderate
computational cost (136G). And we want to re-emphasize that our primary goal here is to
investigate the difference between temporally persistent and fine-grained features with strong
baselines (65%+ for both TeG-PS and TeG-FG, and we observe a 2.8% difference with is
large on K400), not solely competing for best numbers.
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B Additional Implementation Details

B.1 VidSitu

VidSitu [52] contains 23.6k training, 1.3k validation and 1.3k test videos. Since the
test set is held out for a challenge, we benchmark on the validation set. We download the
videos with 720⇥1280 resolution and 30 frame-per-second, using the script provided by the
authors. During training, we apply random cropping with the area ratio set as (0.3, 1.0) and
then resize frames to 224⇥224 as in [48].

B.2 Kinetics-GEBD

Kinetics-GEBD [56] annotates 20k out of 240k training videos and all 20k validation
videos from Kinetics-400. Each video is annotated by 5 sets of event boundaries. The multi-
labeling does not affect our self-supervised pre-training stage since no labels are used.

For generating training clips, we adopt the practice from the dataset authors by selecting
the annotation entry with the highest F1 consistency score with other entries. The annotation
is in the format of timestamps and we choose the closest frame to a ground truth timestamp
as an event boundary. We adopt a 32-frame long sliding window with a stride of 3-frame.
The 16th frame of the sliding window is considered as the center frame, and the window
would get a positive label when the time difference between the center frame and ground
truth is less than 0.15 second.

During fine-tuning, we sample a clip of 16 frames with a stride of 2 inside each window,
and feed it into the video encoder. No temporal augmentation is applied. Instead of global
average pooling, we conduct two separate average pooling before and after the center frame.
We then concatenate the two features and perform binary classification.

For prediction, we use the same sliding window and stride as in training. If a window
is classified as positive, we use the timestamp of the center frame as the detected boundary.
We would merge consecutive positive predictions into a single prediction by averaging their
predicted timestamps.

Please refer to the original paper [56] and the challenge evaluation code [55] for details
on how to deal with multiple ground truths and calculate the final F1 score.

C Visualization of Feature Similarity

We provide a visualization of feature similarity to demonstrate the difference between
temporally persistent and fine-grained features. Concretely, for every video in VidSitu val-
idation set, we sample the center clip of each event and feed them into the trained video
encoder to get their feature vectors. We then calculate the cosine similarities between all
pairs of features, forming a 5⇥5 similarity matrix. We extract learned features from two
video encoders TeG-PS and TeG-FG. Randomly selected examples are shown in Fig. 6.
From these examples, we can see that temporally persistent features would generally pro-
duce higher similarity scores compared with temporally fine-grained features. We also draw
a further observation that temporally fine-grained features are robust when the temporal con-
tent within the video changes very little (see the example in row 5, column 1 of Fig. 6).
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Stage Network Output size T ⇥S2

data - 16⇥2242

conv1
5⇥72, 64 8⇥1122

stride 2⇥22

pool1
1⇥32 max 8⇥562
stride 1⇥22

conv2

2

4
1⇥12, 64
1⇥32, 64

1⇥12, 256

3

5⇥3 8⇥562

conv3

2

4
1⇥12, 128
1⇥32, 128
1⇥12, 512

3

5⇥4 8⇥282

conv4

2

4
3⇥12, 256
1⇥32, 256
1⇥12, 1024

3

5⇥6 8⇥142

conv5

2

4
3⇥12, 512
1⇥32, 512
1⇥12, 2048

3

5⇥3 8⇥72

global average pooling 1⇥12

Stage Network Output size T ⇥S2

data - 8⇥2242

conv1
1⇥72, 64 8⇥1122

stride 1⇥22

pool1
1⇥32 max 8⇥562
stride 1⇥22

conv2

2

4
1⇥12, 64
1⇥32, 64
1⇥12, 256

3

5⇥3 8⇥562

conv3

2

4
1⇥12, 128
1⇥32, 128
1⇥12, 512

3

5⇥4 8⇥282

conv4

2

4
3⇥12, 256
1⇥32, 256

1⇥12, 1024

3

5⇥6 8⇥142

conv5

2

4
3⇥12, 512
1⇥32, 512

1⇥12, 2048

3

5⇥3 8⇥72

global average pooling 1⇥12

(a) R3D architecture in CVRL [48] (b) R3D architecture in [18]

Table 4: Detailed comparison of 3D-ResNet-50 backbones. The only difference is in conv1
(highlighted in bold). Network parameters: (a)31.8M, (b)31.8M; network FLOPs: (a)45.6G,
(b)41.7G; We follow the setting of (a) since it is already open-sourced. We can reproduce
the results with architecture (a) and its corresponding data augmentation as well as training
hyper-parameters.
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Figure 6: Random examples of feature similarity on VidSitu validation videos. In each
subfigure, we show the input video (top), the similarity matrices of temporally persistent
features (bottom left) and temporally fine-grained features (bottom right).


