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Abstract

Various convolutional neural networks (CNNs)-based image inpainting techniques
have been actively studied to remove unwanted objects or restore missing parts in re-
cent years. The common standard for training image inpainting CNNs is synthesising
hole regions on the existing datasets, such as ImageNet and Places2. However, from the
viewpoint of the object removal task, such a methodology is suboptimal because actual
pixels behind objects, i.e., “ground truth”, cannot be used for training. Facing this prob-
lem, we introduce Real-world Object Removal Dataset (RORD), a large-scale collection
of image pairs with and without objects. RORD consists of a wide range of real-world
scenes, plus two types of pixel-accurate annotations, i.e., object mask and segmentation
map. Our dataset allows existing image inpainting models to be trained accurately as well
as evaluated with high confidence. In this paper, we describe in detail how the dataset
is constructed and demonstrate the validity and usability of RORD. RORD is publicly
available at https://github.com/Forty-lock/RORD

1 Introduction
In recent years, research attention towards image inpainting for image restoration and ob-
ject removal has grown faster. Unlike classic image inpainting methods that require human
labour or expert knowledge to complete missing image content, recent convolutional neural
network (CNN)-based methods have made it possible to reconstruct plausible pixels auto-
matically. Advanced image inpainting technology has already come close to our lives.

Existing deep learning-based image inpainting methods [7, 13, 14, 15, 20, 22, 26, 27, 28]
require pairs of inpainting masks and ground truth images with the pixel values in the masks
for training. A common practice is creating a hole region of the desired size and shape on
the image and using the original image as the ground truth for supervision. Existing image
datasets, such as ImageNet [8] and Places2 [29], have thus been used to generate a training
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Figure 1: Toy example for the object removal task: (a) Input image containing the object
to be removed (plane), (b) object-removed image, (c) and (d) object removal results. The
PSNRs are obtained as 21.10 and 18.69 for (c) and (d), respectively. This inconsistency
misleads the training and performance evaluation of inpainting models.

dataset. However, this practice has an obvious drawback when applied to the object removal
task. Object removal aims to erase the specified object and fill the hole region such that the
region blends seamlessly with the surrounding background. Under the common practice,
the ground truth pixels for the hole region are still object pixels. Consequently, inpainting
networks are unavoidably trained to synthesise these object pixels, which is not desired for
the target task of object removal. Figure 1 depicts a toy example of object removal. Fig-
ures 1(c) and (d) show two different inpainting results for the input image and object mask in
Figures 1(a) and (b). It is evident that Figure 1(d) is better than Figure 1(c) from the perspec-
tive of object removal. However, in terms of the standard performance measure of the peak
signal-to-noise ratio (PSNR), Figures 1(c) and (d) have 21.10 dB and 18.69 dB, respectively.
In other words, Figure 1(c) is evaluated to be a better result than Figure 1(d), misleading not
only the model training but also performance benchmarking.

This paper introduces the Real-world Object Removal Dataset (RORD), which is the first
large-scale real-world image dataset specialised for the object removal task. To the best of
our knowledge, RORD is the only dataset that contains a sufficient number of images with
and without the objects in the scene. RORD consists of 516,709 images captured under 3,447
unique scenes. Each scene belongs to one of 55 outdoor and 32 indoor categories and has
the corresponding ground truth image without objects to be removed. Moreover, two types
of pixel-wise annotations are provided for all images: binary object masks and semantic
segmentation maps consisting of 42 classes. The images and abundant annotations of RORD
are publicly available for researchers to accelerate their studies.

Our contributions are summarised as follows:

• We release RORD, the first real-world image dataset that is specialised for object re-
moval, containing a pair of images with and without objects.

• RORD supports a large number of images captured under a wide variety of indoor and
outdoor real-world environments and contains objects of various sizes and classes.

• The two types of pixel-accurate annotations, i.e., object masks and segmentation maps,
are further provided to advance the field of image inpainting and other related tasks.

2 Preliminaries

2.1 Image Inpainting
Image inpainting techniques can be divided into two approaches: traditional and learning-
based approaches. In the traditional approach, diffusion-based methods [2, 3, 10] propagate
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Figure 2: Three examples of video clips in our RORD. For each clip, with corresponding
segmentation maps, we present a ground truth image (first column) without objects as well
as object-containing images.

the information from the neighbouring regions to the hole regions, while patch-based meth-
ods [1, 7, 9, 25] paste patches sampled from the background regions into the missing regions.
Especially, Barnes et al. introduced a fast approximate nearest neighbour patch search algo-
rithm, called PatchMatch [1]. However, the traditional methods have limited performance
since they cannot consider semantic information or global structure.

On the other hand, the learning-based approach [13, 15, 17, 20, 22, 23, 26, 27, 28] aims
to extract semantic information from massive data training, thus significantly enhancing the
performance of image inpainting. Furthermore, the generative adversarial network (GAN)
has been applied to recover the corrupted regions more plausibly, resulting in further im-
provements. Specifically, Pathak et al. presented ContextEncoder [17], an encoder-decoder
model to to complete the hole region. Yu et al. [26] proposed a novel model with coarse-
to-fine architecture that generates an initial coarse result and refines it based on the roughly
filled prediction. Moreover, with the parallel extended-decoder path (PEPSI) [20], Sagong
et al. improved the inpainting performance while reducing the number of convolution op-
erations. Meanwhile, several adaptive convolution techniques considering pixels’ validity
were presented: partial convolution [13] and gated convolution [27]. Similarly, Yu et al.
introduced a spatial region-wise normalisation called region normalisation (RN) [28], which
normalises pixels in corrupted and uncorrupted regions separately and performs affine trans-
formations globally.

Meanwhile, some studies aimed at erasing whole objects have been recently introduced [4,
5, 16, 19, 21]. Since there are no ground truth images with objects removed, they cannot con-
sider reconstruction errors such as L1 or L2 loss. To determine the presence or absence of
an object in the result image, Shetty et al. [21] employ an object classifier. SESAME [16]
exploits semantic labels of the hole regions to synthesise the corresponding pixels. Sim-
ilarly, SECI-GAN [19] not only extracts high-level cues from semantic segment informa-
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Figure 3: Examples of the image pairs and segmentation maps with and without objects. In
the first row, each image contains a person or airplane as a target object to be removed. The
second row shows background images without target objects.

Charateristic Number Rate(%)
516,705 100

Location Outdoor 334,376 64.7
Indoor 182,329 35.3

Object proportion

∼ 10% 121,453 23.5
10% ∼ 20% 122,873 23.7
20% ∼ 30% 103,905 20.1

30% ∼ 168,474 32.7

Table 1: Image distributions in terms of location and object proportion. RORD provides a
sufficient number of images for each level, making it especially useful to train object removal
models robust to scenes and object sizes.

tion, but also utilises the fine-grained details captured by edge extraction. Moreover, these
methods could not evaluate their models with the conventional metrics such as PSNR and
SSIM [24, 31].

2.2 Datasets for Image Inpainting

Various vision datasets can be employed for deep-learning-based image inpainting. Indeed,
state-of-the-art image inpainting methods have used popular large-scale datasets developed
for image classification, such as ImageNet [8] and Places2 [29]. By creating rectangular
or free-form holes in the image, hole and mask images are obtained to be used as input
for training or evaluation. The original image without holes serves as the ground truth.
Although this procedure is simple as well as effective for general image inpainting, there
is a glaring error in its application to remove dispensable objects. When the entire object
belongs to the hole, the ground truth image still contains the object that cannot and should
not be restored. These mismatched pairs lead to miscalculated losses resulting in inaccurate
learning of models. Moreover, since there is no segmentation information, these datasets
cannot be employed at all for the evaluation of object removal tasks. On the one hand,
object segmentation datasets like MS-COCO [12] or cityscapes [6] easily derive hole images
masking the object, but there are still no correct ground truth images with objects removed.
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Figure 4: Image statistics in terms of scene categories for the outdoor (top) and indoor (bot-
tom) environments. The Same colored bar means the same category. The outdoor dataset
consists of 55 subcategories for 12 scene categories. Several infeasible categories are ex-
cluded for the indoor environments, resulting in 32 subcategories for 9 scene categories.

3 Real-world Object Removal Dataset

3.1 Dataset Statistics

RORD consists of 516,705 images captured under 3,447 unique scenes. Each scene was
first captured without any target objects, serving as a ground truth image for object removal.
Then, the same scene was captured multiple times with the target objects at different po-
sitions. In this manner, RORD provides real image pairs with and without objects, which
are vital for the supervised learning of object removal models. We collected full HD videos
and equalised their resolution to 1920×1080. The high-resolution images of RORD leave a
greater room for posterior data augmentation. Figure 2 shows three scenes in RORD. As can
be seen, we captured controlled scenes without any camera motion and located target objects
at multiple positions such that multiple image pairs can be provided for each scene. Figure 3
shows more examples of the images with and without the objects. To maximise the diversity
of the dataset, we define 12 scene categories: Sports, business, activity, leisure, pet, animal,
vehicle, flight, ship, two-wheeler, things, and others. Figure 4 shows image distributions for
outdoor and indoor environments. The outdoor dataset consists of 55 subcategories for 12
scene categories. Several infeasible categories are excluded for the indoor environments, re-
sulting in 32 subcategories for 9 scene categories. In total, RORD provides 334,376 outdoor
and 182,329 indoor images, which are sufficient to train object removal networks.

In addition, RORD supports images composed of objects of various sizes. The object
size is classified into four different levels: ~10%, 10~20%, 20~30%, and 30%~, according
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Figure 5: Number of pixels per annotation labels, which are grouped by scene categories
and sorted according to the frequency for each category. The pixel distribution of semantic
classes is widely spread over diverse classes.

Figure 6: Examples of the object masks in RORD. We annotate the object with an enough
margin for each image (as highlighted in yellow) and generate a binary mask to cover the
object and artifacts from it completely.

to the proportion of the number of pixels in the object over the number of pixels in the image.
As shown in Table 1, RORD provides a sufficient number of images for each level, making
it especially useful to train object removal models robust to object sizes.

Last, to boost the performance of deep neural networks, elaborate data augmentation or
post-processing is frequently applied. To support any desired data processing, we distribute
full HD images without applying any post-processing. We intend to leave the choice of
optimal handling of our images to researchers who deploy our dataset.

3.2 Annotations

RORD provides binary object masks to indicate object pixels to be removed, which are
usually assumed as given in the image inpainting task. In general, object mask is generated
from the semantic segmentation label. However, the object mask from the segmentation map
does not completely cover the object and artifacts from it. For complete object removal, not
only the objects but also their reflection and shadow need to be annotated. As shown in
Figure 6, our object masks cover whole objects with proper margins. By using the object
mask in RORD, object removal models can be evaluated properly.

Having pixel-wise semantic labels extends the feasibility of the dataset by allowing the
development of various vision applications and multi-modal tasks. In this regard, RORD
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MS-COCO Places2 RORD
PSNR SSIM PSNR SSIM PSNR SSIM

PASCAL-VOC 17.01 0.774 17.10 0.777 16.87 0.773
Deepfill-v1 [26] MS-COCO 19.17 0.832 19.25 0.835 19.07 0.831

RORD 24.43 0.864 24.49 0.868 24.81 0.869
PASCAL-VOC 16.59 0.745 17.03 0.770 16.78 0.755

Partial Conv [13] MS-COCO 18.81 0.812 19.24 0.830 18.81 0.814
RORD 24.00 0.854 24.39 0.860 24.65 0.861

PASCAL-VOC 16.88 0.774 17.01 0.776 16.90 0.770
Deepfill-v2 [27] MS-COCO 19.08 0.832 19.10 0.834 19.08 0.828

RORD 24.46 0.865 24.43 0.868 24.80 0.866
PASCAL-VOC 16.81 0.772 17.03 0.781 16.69 0.767

PEPSI [20] MS-COCO 19.06 0.831 19.23 0.838 18.96 0.828
RORD 24.45 0.865 24.80 0.838 24.87 0.868

PASCAL-VOC 16.31 0.759 16.44 0.744 16.54 0.757
RN [28] MS-COCO 18.53 0.823 18.59 0.813 18.68 0.820

RORD 23.32 0.856 22.26 0.831 23.91 0.858

Table 2: PSNR and SSIM results of cross-validation test. Each model is respectively trained
on MS-COCO, Places2 or RORD and evaluated on three other datasets, including PASCAL-
VOC, MS-COCO, and RORD. The big numeric margin between the results evaluated with
conventional methods or RORD is caused by the absence of ground truth data.

includes precise annotations, which can be divided into two types; 1) dynamic objects that
appear in the scene or not, e.g., humans, vehicles, and 2) static backgrounds that remain in
every frame, e.g., sky and ground. Accordingly, we separate annotation labels into two super
labels, i.e., objects and backgrounds, as depicted in Figure 5, covering 42 semantic classes se-
lected from existing datasets, including MS-COCO [12], PASCAL-VOC [11], Places2 [29],
and ADE20K [30]. Note that the pixel distribution of semantic classes is widely spread over
diverse classes. Paid and experienced workers annotated all images, and unreliable annota-
tions were manually excluded from the collections. We also reviewed the data by supervisors
who are independent of the annotator to double-check for errors.

4 Evaluation

4.1 Evaluation Models

We tested the state-of-the-art image inpainting models, i.e., Deepfill-v1 [26], Partial Conv [13],
Deepfill-v2 [27], PEPSI [20], and RN [28], to evaluate the validity of RORD. Deepfill-v1 in-
troduces the coarse-to-fine network and the contextual attention module to reconstruct the
hole region using the patches in the background. Partial Conv applies a masked convolu-
tion with renormalisation to use only valid pixels, i.e., the pixels outside the hole region.
Deepfill-v2 utilises the gated convolution to better handle valid pixels for inpainting. PEPSI
modifies the coarse-to-fine network into the parallel network to reduce the inference time.
RN computes the mean and variance separately for valid and invalid pixels for normalisation
to overcome the mean and variance shifts caused by the conventional feature normalisation.
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Figure 7: Visual comparison of results from various models trained with RORD. The num-
bers under the images represent PSNR between the result and the ground truth. RORD has
higher reliability of performance measurement than the conventional datasets.

4.2 Implementation Details
We evaluated the aforementioned models trained on RORD, Places2 [29], or MS-COCO [12].
Specifically, since there is no background information behind the objects in Places2 and
MS-COCO, we generated random object masks to train the models. On the contrary, for
the RORD-trained models, we used pairs of images with and without objects. We divide
RORD 412,304 images for training and 104,401 images for the test. For a fair comparison,
we trained the inpainting models while keeping all settings unchanged.

The object-containing and object-less frames can have a slight misalignment and bright-
ness shifts. For example, in an outdoor scene, brightness and background clutters can be
changed by cloud or wind during the video clip. Therefore, we cropped the object region
from the object-less image and pasted it to the object-containing image to alleviate the mis-
alignment of the background. In addition, if the brightness of the images is different, simply
pasting the object region can create unnatural boundaries. To cope with this problem, we
applied the Poisson image editing [18] for seamless cloning.

4.3 Evaluation Results
To demonstrate the effectiveness of RORD, we have conducted cross-validation studies
on various inpainting models by switching the training and test datasets. More specifi-
cally, existing models trained on MS-COCO [12], Places2 [29] or RORD were assessed
on three datasets including PASCAL-VOC [11]. Table 2 represents that evaluation results

Citation
Citation
{Zhou, Lapedriza, Khosla, Oliva, and Torralba} 2017{}

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{P{é}rez, Gangnet, and Blake} 2003

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Zhou, Lapedriza, Khosla, Oliva, and Torralba} 2017{}

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x protect penalty @M  {}Gool, Williams, Winn, and Zisserman} 2010



SAGONG AND YEO: A REAL-WORLD OBJECT REMOVAL DATASET 9

Figure 8: Visual comparison of results from the PEPSI models [20] trained with MS-COCO
and RORD, respectively. The evaluation is conducted on RORD to compare the results to
the object-free ground truth. Training with RORD allows the model to fill hole regions more
effectively.

on PASCAL-VOC [11] and MS-COCO [12] datasets show poor performance than results
on RORD. As mentioned in Section 1, the significant performance gap between the results
evaluated with the conventional method or RORD is caused by the absence of ground truth
background pixels behind objects. Especially, the evaluation by PASCAL and MS-COCO
shows low validity to the point where there is no performance change regardless of the train-
ing dataset. Figure 7 shows several inpainting results from each dataset and its PSNR repre-
sented under the images. As can be seen in Figure 7, the image which has blur or artifacts
shows rather higher PSNR when evaluated with conventional datasets. For example, in the
third column, although RN results in the failure case, its PSNR value surpasses results from
other methods. This tendency of the conventional datasets leads to critical drawbacks in
evaluating inpainting models. In contrast, RORD has high reliability of performance mea-
surement including appropriate ground truth images.

In this valid evaluation of object removal, training on RORD improves performance in all
image inpainting models. Figure 8 shows a visual comparison of results from PEPSI model
trained with MS-COCO or RORD. Indeed, the model trained on RORD synthesises more
visually pleasing images than the model trained on MS-COCO. These results indicate that,
as mentioned in Section 2.2, the conventional methodology for training image inpainting
networks can lead to inaccurate learning, but the proposed RORD is an effective dataset for
training models with large-scale and real task-specific image pairs.

5 Conclusion
In this paper, we introduced the RORD, a new large-scale object removal dataset, including
paired images with and without objects along with dense annotations. RORD focuses on
compensating for the absence of correct information behind the objects. Our dataset is elab-
orately collected to cover diverse real-world scenes and carefully annotated by experienced
annotators. We demonstrate the benefits of RORD with both quantitative and qualitative per-
formance evaluations. We expect that RORD can contribute to the field of object removal
by not only providing precise ground truth for training but also serving as a benchmark for
accurate performance evaluation.
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