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Abstract
The ability to perform successful robot-to-human handovers has the potential to im-

prove robot capabilities in the circumstances involving symbiotic human-robot collabo-
ration. Recent computer vision research has shown that object affordance segmentation
can be trained on large hand-labeled datasets and perform well in task-oriented grasping
pipelines. However, producing and training in such datasets can be time-consuming and
resource-intensive. In this paper, we eliminate the necessity for training in these datasets
by proposing a novel approach in which training occurs on a synthetic dataset that ac-
curately translates to real-world robotic manipulation scenarios. The synthetic training
dataset contains 30245 RGB images with ground truth affordance masks and bounding
boxes with class labels for each rendered object. The object set used for rendering con-
sists of 19 object classes capturing 7 affordance classes.

We propose a variant of AffordanceNet enhanced with domain randomization on the
generated dataset to perform affordance segmentation without the need of fine-tuning on
real-world data. Our approach outperforms the state-of-the-art method on synthetic data,
by 23%, and achieves performance levels similar to other methods trained on massive,
hand-labeled RGB datasets and fine-tuned on real images from the experimental setup.
We demonstrate the effectiveness of our approach on a collaborative robot setup with
an end-to-end robotic handover pipeline using various objects in real-world scenarios.
Code, the synthetic training dataset, and supplementary material are publicly available
at: https://bit.ly/AffNet-DR.

1 Introduction
Successful robotic handovers are critical for seamless operation in collaborative tasks where
both humans and robots have to handle diverse objects and tools, from disassembly scenarios
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(a) (b)
Figure 1: (a) Object affordances generated by our proposed framework. From left to right:
RGB input images, the segmented object affordance masks and the task-oriented grasps
generated with our approach. Colors indicate the affordances as red: Grasp, teal: Pound,
blue: Contain, lime green: Scoop (best viewed in color). (b) Our collaborative robotic setup
performs a successful robot-to-human handover based on the proposed work. A full video
demonstration is available in our code repository at: https://bit.ly/AffNet-DR.

in industrial shopfloors [13] to robotic-assisted surgery [31]. From the human perspective,
a handover is a natural, collaborative action between two people where a giver attempts to
deliver an object to the receiver for a specific task. Nonetheless, in the robotic world, a
handover is an intricate procedure that requires accurate object detection, precise grasping,
adequate trajectory planning, and proper anticipation of the human’s position.

A handover can be either task-agnostic or task-oriented. In the case of task-agnostic
handover, we are primarily interested in the success rate of the action itself. However, in
the context of symbiotic human-robot collaboration (HRC), we also need to consider the
subsequent task of the user after the handover action completes successfully. Therefore,
the tool must be grasped using task-oriented grasping methods and result in a task-oriented
handover for an uninterrupted workflow.

Using the affordance theory as first introduced by Gibson [10], several methods for task-
oriented grasping have been proposed [1, 17, 37]. Object affordances refer to the function-
alities that an object facilitates irrespective of the current state of the object [14]. Naturally,
the constituting parts of an object have different affordances, which allow object affordance
detection to be treated as a pixel-wise segmentation problem [35]. Therefore, task-oriented
grasps can be generated by first segmenting the object affordances from the visual input e.g.,
3D CAD models and RGB images, and then computing a grasp associated with the proper
affordance [15]. Fig. 1 demonstrates some examples of object affordance segmentation and
task-oriented grasps generated from our proposed method.

Recent affordance segmentation methods are based on deep neural networks which are
known to require vast amounts of data in order to learn and generalize [15, 22, 23]. On the
one hand, annotating datasets with labels for each available pixel of the respective objects
is a resource-demanding task that does not scale well for large datasets. On the other hand,
datasets containing synthetic data are easier to generate and annotate while they require sig-
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nificantly less resources [4]. However, such datasets suffer from the sim2real gap, meaning
that frameworks trained on synthetic data might perform poorly on real-world situations [30].

In order to alleviate this problem, domain randomization can be used [28]. By random-
izing parameters such as scene lightning, object poses and textures in the simulation envi-
ronment, the real world could appear as another variation to the model. Work such as [29]
indicates that methods using domain randomization can achieve comparable or better results
than utilizing real-world data only.

In this paper, we propose a novel framework for robotic handovers where we use syn-
thetic data generated with domain randomization for the training of an AffordanceNet deep
neural network variant.We validate the outcome of the training with a real-world dataset and
thereafter we prove that it generalizes well by performing successful robotic handovers with
our collaborative robot setup. The contributions of our work are:

• A novel method which improves the segmentation of object affordances using a deep
neural network, even when it is trained solely with synthetic data.

• A new approach for generating synthetic data for object affordance detection using
domain randomization. We show that domain randomization is sufficient for reducing
the sim2real gap significantly and enabling real-world robotic handovers.

• An open dataset consisting of synthetic data, all implementation details and ROS pack-
ages required for reproducing the robotic handovers shown in this work.

The code used in this paper is made publicly available via our github repository where
the synthetic dataset, the deep neural network, and the ROS packages for robot control can
be found.

2 Related Work
Detecting affordances based on visual data has been studied and used in many robotic ap-
plications [19, 20] with great focus on robotic manipulation [33]. Earlier research proved
that it was possible to detect graspable object parts by extracting geometric properties from
point clouds [24], geometric features from RGB-D images [21] and semantic scene infor-
mation [5]. However, such approaches suffered a significant drop in performance when
generalization was needed.

Deep learning methods have been proven to outperform traditional affordance segmenta-
tion approaches [22] and object-based approaches predicting the position, class, and object
affordances simultaneously have become popular in task-specific grasping [15]. Nguyen et
al. [23] proposed applying a modified Faster-RCNN network to detect dense feature maps
on depth data and post-processed with dense CRFs to improve the performance further.

Recently, a method called AffordanceNet [6] outperformed other methods by proposing
a modified Mask-RCNN network to detect object affordances. AffordanceNet performs well
in real-world scenarios and often serves as the baseline in robotic manipulation research.
The approaches of [7] and [25] experimented with changing the quality of the features ex-
tracted by the backbone of AffordanceNet scoring slightly higher when replaced VGG16
with ResNet-based networks.

Attention modules have recently been applied in object affordance detection methods [11,
32, 34, 36]. The methods are not object-based but instead approach the problem as a segmen-
tation problem. Zhao et al. [36], draw inspiration from the potential symbiotic relationship of
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affordances and objects and propose an attention and relationship-aware module to improve
the segmentation of affordances. Yin et al. [34] applied recent advances in image segmen-
tation methods in their SEANet network and modified it to incorporate a spatial gradient
fusion module and a shared gradient attention module. Recently, Gu et al. [11] utilized an
encoder-decoder architecture with a DRN network to extract features with attention modules
to improve upon the salient details of the affordance map.

Most of the related work is focused on improving the architectures for object affordance
detection based on tailored real-world data with limited variation. The UMD dataset [21]
contains hand-annotated, pixel-wise affordance labels from RGB-D input of 105 tools cap-
tured in calibrated conditions. At the same time, the IIT-AFF [23] dataset was collected to
address the lack of generalization and included a subset of images from ImageNet in order
to introduce variation and diverse contexts. The necessity for considerable resources to fa-
cilitate pixel-wise affordance annotation is a significant barrier in developing such datasets.
Weakly supervised approaches have been proposed to overcome this issue, but the challenge
persists when the datasets contain a large quantity of data [9, 26, 27].

Therefore, Chu et al. [2] proposed to learn affordances by training on synthetic images
with their method, AffNet-DA. They mainly collected RGB-D images captured in a Gazebo
simulation and domain adaptation was used to bridge the sim2real gap by training unsuper-
vised on the UMD dataset after training on the synthetic dataset. However, a performance
drop of 30% compared to techniques trained only on real-world data was observed.

Inspired from the work in [2], we propose an improvement in the context of affordance
segmentation using synthetic data by applying domain randomization. The proposed method
is trained using RGB images, and it can localize affordance candidates in multiple objects in
the UMD and our dataset. We achieve a rise of 23% in segmentation performance compared
to AffNet-DA, while the real-world handover experiments with our collaborative robot setup
validate that we bridge the sim2real gap successfully.

3 Methodology

3.1 Generation of the synthetic dataset

A synthetic dataset generator was implemented based on the Unity game engine, which pro-
duces synthetic images with corresponding ground truth in the form of pixel-wise affordance
masks and bounding boxes with a class label, as illustrated in Fig. 2. The dataset is generated
using domain randomization principles, in order to overcome the sim2real gap. The premise
of domain randomization is to train the network on a dataset with a great variance, such that
the corresponding objects in the real world is seen as just another variation to the network.
Similar to the work of [28] and [29], we vary a wide list of parameters, including object
textures, object poses and illumination conditions, during the dataset generation. A full list
of the parameters can be found in Table 1 and sampled them based on a uniform distribution.

A synthetic version of the UMD dataset was created by annotating 84 different objects
covering 19 object classes (Knife, saw, scissors, shears, scoop, spoon, trowel, bowl, cup,
ladle, mug, pot, shovel, turner, hammer, mallet, tenderizer, bottle and drill) with affordance
labels covering 7 affordance classes (grasp, cut, scoop, contain, pound, support and wrap-
grasp) present in the UMD dataset. The objects are imported into the Unity game engine as
a set of a mesh and a texture. Each object is annotated with their associated affordances by
editing the texture. Geometric primitives with randomized dimensions and textures were

Citation
Citation
{Yin, Zhang, and Ren} 2022

Citation
Citation
{Gu, Su, and Yuan} 2021

Citation
Citation
{Myers, Teo, FermÃ¼ller, and Aloimonos} 2015

Citation
Citation
{Nguyen, Kanoulas, Caldwell, and Tsagarakis} 2017

Citation
Citation
{Gall and Sawatzky} 2017

Citation
Citation
{Sawatzky, Srikantha, and Gall} 2017

Citation
Citation
{Sawatzky, Garbade, and Gall} 2018

Citation
Citation
{Chu, Xu, and Vela} 2019{}

Citation
Citation
{Chu, Xu, and Vela} 2019{}

Citation
Citation
{Tobin, Fong, Ray, Schneider, Zaremba, and Abbeel} 2017

Citation
Citation
{Tremblay, Prakash, Acuna, Brophy, Jampani, Anil, To, Cameracci, Boochoon, and Birchfield} 2018



CHRISTENSEN ET AL.: LEARNING TO SEGMENT OBJECT AFFORDANCES 5

Figure 2: Two scenes from the dataset. Top row: A scene without distractors. Bottom row:
A scene with distractors. Distractors are annotated as background.

Table 1: Parameter values of our synthetic dataset
Randomized paremeter Values
No. objects in scene 3 to 25
No. distractors in scene 5 to 10
Pose of objects and distractors Random position and random orientation
Scale of objects and distractors 1 to 5 times
Object distortion Each axis is scaled 0.75 to 1.25 times.
Textures Sinusoid-, perlin-noise, checkerboard and photo-realistic.
Light sources 1 to 3 with random poses
Light color 0 to 255 in all rgb channels
Light intensity 1 to 4 Unity game engine units
Screen res. width 400 to 600 pixels
Screen res. height 400 to 600 pixels

used as distractors. More complex shapes were occasionally achieved by distractors occlud-
ing each other. The purpose of including distractors is to train the network for situations
when foreground objects are not all classifiable [28]. Furthermore, occluded or partially vis-
ible objects were removed from the dataset. Typically, objects were always spawned within
the camera’s field of view. However, after the objects’ sizes were randomized, the bound-
ing boxes often partially exceeded the camera’s field of view. Consequently, such objects
were despawned and removed. Similarly, when the initially spawned object was occluded
by either a distractor or a newly spawned object, the new object occluding the initial object
was removed. Therefore, the generated dataset only contains fully visible items inside the
camera’s field of view.

3.2 AffordanceNet implementation

Our approach is inspired by AffordanceNet [6] and it can simultaneously predict the position,
class and affordances of objects in RGB images. Unlike [2], we do not make use of depth
images as simulated depth images vary substantially from real-world depth images. Instead,
we rely only on RGB visual input due to the high performance and resolution of available
cameras providing us RGB images.

The network is akin to Mask-RCNN. It consists of a CNN backbone in combination with
a feature pyramid network for feature extraction. Region proposals are fed into the three task
branches. The classification branch outputs C object categories. The classification branch
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loss Lcls is cross entropy loss calculated on the softmax normalised output as in (1).

Lcls =−
C

∑
c=1

log
exp(xn,c)

exp(∑C
i=1 xn,i)

yn,c (1)

Where x is the prediction and y is the binary target. Likewise, the affordance mask branch
loss La f f also uses cross-entropy loss but in a pixel-wise manner.

The regression layer predicts four bounding box coordinates for each object. The output
is N ×4, where N is the amount of predicted objects. The regression loss Lloc is smooth L1
loss, and computed as in (2):

Lloc = ∑
i∈x,y,w,h

SmoothL1(tu
i − vi) (2)

Where

SmoothL1(x) =

{
0.5x2, if |x|< 1.
|x−0,5|, otherwise.

(3)

We train the whole network end-to-end with a multi loss function, with loss functions specific
to the task of each branch as in (4).

L = Lloc +Lcls +La f f (4)

3.2.1 Key changes from AffordanceNet

There are a couple of differences between our implementation and the original AffordanceNet.
To begin with, AffordanceNet’s VGG16 backbone has been replaced with a ResNet back-
bone, since ResNet-based backbones improve the extracted features and in turn provide bet-
ter affordances [7, 25]. Due to computational resource limits, the mask branch has been
reduced compared to AffordanceNet as well. Each upsampling layer contains 128 channels
as opposed to 512 in AffordanceNet. The kernel size of the first upsampling layers has also
been reduced to 4 from 8 and the stride from 4 to 2.

3.3 Task-oriented grasping pipeline for robotic handover
We utilize a two-stage method for task-oriented grasping by combining the segmented affor-
dance masks and task-agnostic grasps as shown in the pipeline depicted in Fig. 3. Affordance

Point cloud

RGB

AffordanceNet

GraspNet

Input

Input

Affordance segmentation

Potential grasps

Grasp
affordance
association

 

Handover

Figure 3: Proposed two-stage method for task-oriented grasping by combining affordance
segmentation and task-agnostic grasp sampling.
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masks are segmented in an RGB image with our implementation of AffordanceNet while we
sample 6-DOF task-agnostic grasps using GraspNet [8]. Afterward, we compute non-axis
aligned bounding boxes for the segmented affordances of each object in the point cloud used
from GraspNet. Then, potential grasps are associated with an affordance based on the direc-
tion vector of the 6-DOF grasp. We extrapolate the direction vector in 3D space to check
whether it intersects with any affordance bounding boxes or not. If any of the extrapolated
points violate the boundaries of one of the axis-aligned bounding boxes, we associate the
grasp with the affordance of the bounding box. Finally, after the grasps are associated with
the detected affordances, we use MoveIt [3] to calculate and execute the trajectory so the
robot can reach its grasping pose and subsequent handover.

4 Experiments & Results

The proposed system is evaluated with two different tests. The first test measures the perfor-
mance of the proposed affordance segmentation method on the UMD dataset. The second
test measures the handover success rate, when the affordance segmentation method is inte-
grated into a system capable of performing real-world robot-to-human handover experiment.

4.1 Performance on object affordance segmentation

4.1.1 UMD dataset

A baseline network was trained on real-world data to compare our solution against. The
UMD dataset [21] consists of 105 object categories captured as 28844 RGB images covering
17 object classes. Each image in the dataset depicts a single item captured on a turn-table.
Object affordance ground truth is provided for each for each of the 17 objects classes in the
RGB images. Rectangular bounding boxes for training our network were computed as the
smallest bounding box fitting all present pixel affordances in an image.

4.1.2 Synthetic dataset

A synthetic dataset was generated to train the implemented AffordanceNet following the
outlined methodology. In total, 30245 synthetic images were generated in the Unity game
engine with associated ground truth.

4.1.3 Training details

Two versions of our AffordanceNet were trained, a baseline trained on the UMD dataset
and one trained on the synthetic dataset. Both networks were trained in the same manner.
A ResNet-50 [12] pre-trained on the COCO dataset [16] serves as the network’s backbone.
All weights of the backbone were frozen during training and were, therefore, not altered to
take advantage of the backbone’s generalized weights. We trained the UMD baseline for 15
epochs with the category-split dataset. The synthetic variant trained on the synthetic dataset
for 6 epochs. We used a learning rate of 0.05 with a stochastic gradient descent optimizer.
The learning rate was decreased every third epoch by a factor of 10.
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Table 2: Performance on the UMD dataset in terms of average Fω

β
scores

Real-world data Synthetic data
AffordanceNet [6] Baseline AffNet-DA [2] Our method

Grasp 0.731 0.482 0.473 0.611
Cut 0.762 0.575 0.599 0.604
Scoop 0.793 0.647 0.332 0.639
Contain 0.833 0.859 0.83 0.710
Pound 0.836 0.655 0.224 0.804
Support 0.821 0.519 0.541 0.578
W-grasp 0.814 0.848 0.821 0.785
Average 0.799 0.655 0.546 0.676

4.1.4 Evaluation metric and results

For evaluating the affordance maps, we make use of the commonly used Fω

β
score as in (5).

Fω

β
= (1+β

2)
Precisionω ·Recallω

β 2 ·Precisionω +Recallω
(5)

Where Precisionω and Recallω are weighted as specified in [18]. We set the object threshold
at 0.9, and the affordance masks are treated with argmax. The Fω

β
are computed on the

UMD category-split evaluation dataset. The average Fω

β
scores are reported in Table 2 while

qualitative results obtained on the UMD dataset are depicted in Fig. 4.

RGB input

Prediction with our method

Ground truth

Figure 4: Predictions made on the UMD dataset. The proposed method directly generalizes
to real-world data while only training on synthetic data. The colors of the pixels indicate
the segmented object affordances. Red: Grasp. Lime-green: Scoop. Blue: Contain. Pink:
Wrap-grasp. Teal: Pound. White: Support. Green: Cut (best viewed in color).

4.2 Performance on real-world robotic handovers
Real-world robotic handover experiments were conducted to confirm that the proposed method
generalizes successfully to real-world conditions. We used a set of four objects, a hammer,
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Table 3: Success rates of real-world robotic handovers
Handover success rates

Object Affordance Baseline Our method

Hammer Grasp 40 % 90 %
Pound 0 % 90 %

Spoon Grasp 50 % 90 %
Scoop 20 % 70 %

Ladle Grasp 80 % 80 %
Contain 90 % 80 %

Turner Grasp 90 % 70 %
Contain 70 % 90 %

Average success rate 55 % 82.5 %

a spoon, a ladle and a turner with the main goal to grasp them based on the segmented af-
fordances. Tests were conducted with our method trained on synthetic data and the baseline
trained on the UMD dataset. The experiments were carried out with a collaborative robot
platform consisting of a UR5 robot, a Robotiq 3-finger gripper as the end-effector, and a Pan-
Tilt unit supporting an Intel RealSense D435 camera, as Fig. 1.b shows. All the trajectories
were generated with MoveIt on a workstation running Ubuntu 18.04 and ROS Melodic.

4.2.1 Testing procedure

During the manipulation experiments, the following test procedure was followed for both the
synthetic data and real-world data baseline networks:

(1) The test is carried out with one item at a time. The item is placed fully visible in the
camera view. (2) The network performs object detection with a confidence threshold of 0.5.
If the the item is misclassified the test run is considered failed. If no detection is found, the
item is re-positioned up to three times before the test run is considered failed. (3) A grasp
targeting a specific affordance is attempted. The binary success metric reports if the correct
affordance was used for successful grasping operation.

We performed robotic handovers with each item for twenty times, ten per grasp affor-
dance and ten per functional affordance e.g., support affordance for the spatula. The success
rates of handovers achieved with the baseline and our method are reported in Table 3.

5 Discussion
The Fω

β
scores presented in Table 2 show that our domain randomization approach outper-

forms the current state-of-the-art method AffNet-DA by a significant margin. Unlike the
previous method, our method does not need to fine tune on real-world data but directly gen-
eralizes to the UMD dataset from training on synthetic data only.

The results also show that we outperform our baseline trained on the UMD dataset and
real-world data, by a slight margin. However, neither our method trained solely on a syn-
thetic data, or the baseline performs as well as AffordanceNet [6]. This indicates that the
architecture of our network can be significantly improved to achieve higher Fω

β
scores and

higher success rates in robotic handover experiments.
Nevertheless, the results presented in Table 3 show that our method trained only on syn-

thetic data, translates well into the real world. Moreover, because our method achieves a
27.5% higher real-world manipulation success rate compared to the baseline, we can there-
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fore assume that our method, trained on synthetic data, generalizes better to the real-world
data despite the comparable Fω

β
score with the baseline.

6 Conclusion & Future work
We presented a novel approach for real-world robotic handover based on the prediction of
object affordances using domain randomization on synthetic data. Qualitative and quantita-
tive experiments showed that our method, does not suffer from sim2real gap while it outper-
forms the current state-of-the-art synthetic method AffNet-DA by 23% in terms of Fβ

ω score
on the UMD dataset. High success rate on real-world robotic handover experiments proved
that even though the Fω

β
scores of our method trained on synthetic data are comparable to a

baseline, trained on the real-world UMD dataset, our method generalizes better to real-world
visual input.

Interesting future directions of this research could include experimentation with novel
and more efficient neural network architectures in order to achieve better segmentation masks
and higher success rate on the robotic handover experiments. Additionally, our synthetic
dataset generator could be enhanced with structured domain randomization.

Finally, as the UMD dataset is rather simplistic in terms of complexity. It would be
interesting to investigate, if synthetic data can improve object affordance detection in more
complex scenes, such as the ones found in the IIT-AFF dataset [23], which has both object
occlusions and clutter and more varied environments and viewpoints.
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