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Abstract

Transferable adversarial attacks optimize adversaries from a pretrained surrogate
model and known label space to fool the unknown black-box models. Therefore, these
attacks are restricted by the availability of an effective surrogate model. In this work, we
relax this assumption and propose Adversarial Pixel Restoration as a self-supervised al-
ternative to train an effective surrogate model from scratch under the condition of no
labels and few data samples. Our training approach is based on a min-max scheme
which reduces overfitting via an adversarial objective and thus optimizes for a more
generalizable surrogate model. Our proposed attack is complimentary to the adversarial
pixel restoration and is independent of any task specific objective as it can be launched
in a self-supervised manner. We successfully demonstrate the adversarial transferabil-
ity of our approach to Vision Transformers as well as Convolutional Neural Networks
for the tasks of classification, object detection, and video segmentation. Our training
approach improves the transferability of the baseline unsupervised training method by
16.4% on ImageNet val. set. Our codes & pre-trained surrogate models are available at:
https://github.com/HashmatShadab/APR.

1 Introduction

Adversarial attacks [1, 6, 16, 28, 29, 38, 49] add small, imperceptible but well optimized
noise to the clean image which can elicit an incorrect decision from the model. These attack
methods [11, 14, 21, 41, 53, 54] craft adversarial examples that can broadly be categorized
based on how much information is available about the target model. In a whifte-box attack
setting, the attacker has complete knowledge of the target model and can directly optimize
adversarial perturbations for the given model. In a more realistic black-box attack setting,
the attacker does not have access to the target model, its architectural details or targeted task
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(e.g., classification, segmentation or object detection). In such a case, adversarial examples
are created on a surrogate model and then transferred to the black-box model. Adversarial
examples generated from surrogate models trained on a large-scale dataset in a supervised
manner have better transferability [12, 31]. Transferability of such attacks improves further
by fine-tuning the surrogate model to enhance their representation capacity e.g., by finding
better self-ensemble from a given pretrained model [35]. The adversarial transferability
hence depends on the generalizability of the surrogate model. Such attacks are also restricted
by the availability of a pretrained surrogate and information about the label space.

In this work, we call into question this assumption and consider a stronger threat model
where an attack is launched from few unannotated or cross-domain samples (e.g., painting
to ImageNet samples) without any knowledge of target networks or tasks. This threat model
poses a challenge on how to learn an effective surrogate model from the limited unlabelled
data and then how to generate self-supervised transferable adversarial examples.

With limited availability of data, neural networks can easily memorize the data [56] even
with strong augmentations [26]. Therefore, Li et al. [26] propose to reconstruct transformed
input images to learn a surrogate model. However, their effective surrogate training and
attack approach requires supervision though annotated data samples. In order to reduce
overfitting over few data samples and to find robust features, we take inspiration from ad-
versarial training [16, 47] and propose self-supervised Adversarial Pixel Restoration to train
a surrogate model. The min-max objective of our proposed training allows to find a flat-
ter minima with robust features which compliments our self-supervised adversarial attack to
achieve higher adversarial transferability. Our main contributions are as follows:

* We propose self-supervised Adversarial Pixel Restoration to find highly transferable
patterns by learning over flatter loss surfaces. Our training approach allows launching
cross-domain attacks without access to large-scale labeled data or pretrained models.

* Our adversarial attack is self-supervised in nature and independent of any task-specific
objective. For instance, our approach optimizes the robust transformed loss surface of
the surrogate via fooling its reconstruction ability. This allows to generate task inde-
pendent adversaries. Therefore, our approach can transfer perturbations to a variety of
tasks as we demonstrate for classification, object detection, and segmentation.

* We provide a thorough analysis of our proposed method to establish it’s effectiveness.
We observe that our approach leads to smoother loss landscapes (Fig. 2), helping in
crafting more generalizable adversarial examples. Our method remains effective even
in extreme data scarcity e.g. when trained on two data samples only. (see Sec. 4.2).

2 Related Work

Several gradient-based methods [16, 23, 24, 52] have been proposed for crafting adversarial
examples directly on the target classifiers. However, when the access to the target model is
limited to just a finite amount of queries, current methods either rely on the transferability
of surrogate models [37, 39, 57] or estimate the gradients/boundary of the target model
[3, 9, 30]. Both of the above approaches either require a non-trivial number of queries
from the target model or access to the training distribution, making it highly impractical
in real-case scenarios. A practical threat model was introduced in [31], where the attacker
does not have access to the training distribution of the target model, as well as querying is
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prohibited. Authors train a generator-based surrogate model with the help of training data
and a pretrained classifier obtained from a different domain than the target models. However,
the pretrained classifier as well as the generator are trained on a large annotated dataset.

In [26], a stronger threat model with access to limited data samples (order of tens)
was proposed. Inspired from self-supervised learning methods, autoencoder-based surro-
gate models are trained with limited data. However, the transferability of the autoencoders
trained in an unsupervised manner is still moderate. Most of the previous works have ex-
plored the transferability of surrogate models trained on the target model’s training set. In
[48], the authors observe that the features of robust classifiers can be used to generate ad-
versarial examples that are more transferable. Building on this, [47] observe that having
a classifier adversarially trained with a small perturbation budget ("slightly robust"), leads
to highly transferable adversarial examples. Unlike prior works, we focus on constructing
robust surrogate models in a fully unsupervised manner. We consider the case of training
robust model with limited data to improve adversarial transferability. Furthermore, we also
consider a practical scenario of availability of large unlabelled dataset for training of robust
models which can be used for constructing cross-domain and cross-task adversaries.

3 Adversarial Pixel Restoration for Transferable
Perturbations

Our goal is to learn a surrogate model, F, from a given unlabelled data distribution, P,
with a set of only few image samples (< 20). This setting is in contrast to the existing
transferable adversarial attacks [12, 33, 35, 54] that assume access to a surrogate model
trained on a large-scale annotated data (e.g., ImageNet [10]) in a supervised fashion. In
the presence of unlabeled data, however, the surrogate model can be trained by defining a
self-supervised task, 7, such as predicting rotation [15], solving jigsaw puzzle [36] or by
matching different views of the same input sample [8]. A major challenge is that deep neural
networks can easily memorise the data [56] and quickly overfit the few available samples
even after applying strong data augmentation techniques [26]. This results in a surrogate
model with less generalizable representations and consequently, adversarial attack launched
from such a model has weak transferability (Sec. 4.1.1).

We propose adversarial pixel restoration as a prior to train the surrogate model F that
boosts transferability of the adversarial attacks (see Fig. 1 ). We create adversarial examples
from the original input images by attacking the source model in the pixel space using our
proposed adversarial attack (Sec. 3.2.1). Our approach also shifts the position of input pixels
via transformations such as rotation or jigsaw shuffle. We then train a model to denoise and
restore pixels to their original positions via our proposed adversarial training (Algo. 1). The
surrogate model F in our case consists of an autoencoder as explained below.

3.1 Surrogate Architecture

The surrogate model is based on an autoencoder [26]. The encoder consists of a stack of
convolution layers. At the beginning of the architecture, convolution layers with a larger
kernel size and stride help reduce the spatial resolution of the feature maps, followed by
multiple residual blocks where the size of the feature maps is kept constant. The decoder
is a lightweight model consisting of two transpose convolution layers to upsample the fea-
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Figure 1: Our approach trains an autoencoder based surrogate model via self-supervised adversarial
pixel restoration to learn generalizable representations from a limited number of data samples (< 20).
Our training is based on a min-max strategy. We first generate adversarial examples by fooling model’s
reconstructive ability (maximization), followed by updating the model parameters based on restoration
of the transformed adversarial and clean sample (minimization). Our approach allows launching trans-
ferable self-supervised adversarial attacks without any knowledge of target (black-box) model.

ture maps. The adversarial training of these autoencoders is based on denoising and pixel
restoration as explained next in Sec. 3.2.

3.2 Adversarial Training via Denoising

The feature space of a slightly robust classifier produces highly transferable adversarial ex-
amples [47]. However, adversarial training of such models is computationally demanding
due to iterative training and also requires a large-scale labeled dataset that might not be ac-
cessible to the attacker in real-world scenarios. We assume a more practical threat model,
where the attacker has access to a data distribution P; with limited number of samples with-
out any annotations. We adversarially learn a surrogate model on the data distribution P to
transfer adversarial perturbations to the target (black-box) models trained for different tasks
(e.g., classifications, object detection and segmentation) on possibly different target distri-
bution Q; # P;. In such challenging attack settings, we adversarially train an autoencoder F
via min-max training strategy [16]. At maximization step, we create adversarial examples
by fooling the model F via adversarial pixel transformations with a single step attack (Algo.
1). At minimization step, we denoise and restore the feature and pixel space to achieve
generalizable loss surfaces (Fig. 2) which leads to more transferable attack.

3.2.1 Adversarial Pixel Transformations

For given input samples x ~ P, we first find adversarial example, X' subjected to: ||x —
x| < €, by maximizing the following objective (Lyax):

max)iclmize Lax = | F (Ts(x')) — x|, M

where 7, represents the pixel transformation (e.g., rotation or jigsaw shuffle) that shifts the
pixel positions. Therefore, our attack fools the model’s ability to restore the transformed
pixel space by maximizing the loss presented in Eq. 1 and ultimately help to robustify self-
supervised features. Our attack approach can also be extended to benefit from supervisory
signals e.g., by fooling prototypes [26, 46] as follows:

C

max)i}nize Z ()’c ||.7'—(’7}(x')) _ 0 ||p) 7 @)

c=1


Citation
Citation
{Springer, Mitchell, and Kenyon} 2021{}

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{Li, Guo, and Chen} 2020

Citation
Citation
{Snell, Swersky, and Zemel} 2017


MALIK ET.AL: ADVERSARIAL PIXEL RESTORATION 5

Algorithm 1 Adversarial Denoising and Restoration

Require: Source data distribution P;, pixel transformation 7y, attack step size &, perceptual
budget €, balancing paramter A, and maximum training iterations T
Ensure: Randomly initialize surrogate model F
1: forr €[1,2,...7] do

2: Randomly sample from Ps: x ~ P
3 Initialize adversary x’ < x
4: Optimize x" using Eq. 1 or 2: > Adversarial Pixel Transformation

x < x+ 8 xsign(VLyax)

b4

Project adversaries within allowed perceptual budget: x' < clip (x',x — £,x+ €)
Forward-pass x and x’ through model F and update its parameters 6 by minimizing
the loss given in Eq. 5: > Pixel Restoration

)

0« 0—oxVLun,

where « is the learning rate.
7: end for

where C represents the number of categories, y. represents one-hot encoded labels, and x(©)
is the chosen prototype for a particular class. Our proposed attack objective in Eq. 2 helps to
optimize for robust discriminative features with better adversarial transferability.

3.2.2 Pixel Restoration

For a given adversarial sample, x' created using Egs. 1 or 2, we train the surrogate model,
F, by pixel restoration. Our loss function penalizes the model F by minimizing the recon-
struction error between the original sample, x, and the model’s output for the transformed
adversarial as well as the transformed original sample as follows:

Low = || F (Ts(x')) —x||P + | F (Ts(x)) — x||”. 3)

We further regulate the model’s feature space during adversarial training by enforcing
alignment between the original and adversarial feature distributions as follows:

£feature = ”]_-n (ﬁ(x/)) - F" (7;(}2)) H[)’ (4)
where F" represents the intermediate (encoder) layer output. Overall training objective is,
£min = £0ul + A‘Cfeamre; )

where A is the balancing parameter.

3.2.3 Behavior of Robust Loss Surfaces

We visualize the loss landscapes of our trained autoencoders (Fig. 2). We use the filter nor-
malization method proposed in [25], which shows the structure of the loss surface along with
random directions near the optimal pretrained parameters. We observe that our approach
leads to more flatter minima as compared to the baseline method [26]. This has significant
effect on finding generalizable adversarial example with better transferability (Sec. 4.1.1).
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Figure 2: Reconstruction
loss landscape of autoen-
coders. The first column
shows the loss landscapes
of autoencoders trained us-
ing the baseline method on
the task of rotation (fop) and
jigsaw (bottom). The sec-

}’ ond column shows the cor-
responding flatter loss sur-
faces obtained by training
the autoencoders using our
approach.

4 Experimental Protocols

For a pixel range [0, 1], we create L., adversarial examples under perceptual budget of € < 0.1
following [26]. We show adversarial transferability of our approach against ImageNet trained
models (Convolutional and ViTs), object detection and segmentation from in-domain and
cross-domain (paintings, medical scans ) data samples. We used Adam [22] optimizer with
a learning rate of 0.001 for our proposed adversarial pixel restoration (Algo. 1) at € < %
0= %, A =1, p=2. We provide detailed ablative analysis on the effect of these hyper-
parameters in Sec. 4.2.

Surrogate Training with Few Samples: Similar to [26], we assume access to only few data
samples (e.g., 20 samples to train a single autoencoder). We apply Eq. 1 as adversarial pixel
transformation (7°) based on rotation or jigsaw in an unsupervised setting. We also incorpo-
rate our method in the supervised prototypical training of autoencoders mentioned in [26],
where the reconstruction objective function used during the minimization and maximization
step is formulated by Eq. 2. We compare the best prototypical setting reported in [26], com-
prising of multiple decoder networks. All models are trained for the same no. of iterations
as [26]. We provide pseudo code of Algo. 1 in Appendix D.

Surrogate Training with Large Dataset: There is abundance of unannotated data available
via online sources. Therefore, we also scale our proposed self-supervised adversarial training
to large-scale datasets. Specifically, we train a surrogate model (single autoencoder) on
paintings (79k samples) [4], CoCo (40k samples) [27], and Comics (50k samples) [2] to test
unsupervised cross-domain adversarial transferability of our method.

Target Models: Adversarial perturbations from our trained autoencoders (surrogate models)
are transferred to classification models including convolutional: VGG-19 [45], Inception-
v3 (Inc-V3) [50], ResNet-152 (Res152) [17], Densel61 [19], SeNet [18], Wide-ResNet-
50 (WRN) [55], and MobileNet-V2 (MNet-V2) [43], and Vision Transformers: ViT-T and
ViT-S [13], DeiT-T and DeiT-S [51]. We also evaluated adversarial vulnerability of robust
ResNet-50 models [42]. Further, we transfer attack to DETR [5] and DINO [8] to evaluate
on object detection and video segmentation tasks.

Evaluation Metrics: We report drop in Top-1 (%) accuracy, Mean Average Precision (mAP),
and Jaccard Index for classification, object detection and segmentation, respectively.
Datasets: We evaluate classification models on 5k samples from ImageNet validation set in
the same setting as [26]. DETR and DINO are evaluated on CoCo (5k samples) and DAVIS
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Transformation Method VGG-19 1Inc-V3 Res152 Densel2]l SeNet WRN MNet-V2  Average
[26] 31.54 50.28 46.24 42.38 59.06 5124 25.24 43.71

Tigsaw Ours 1682 2554  31.18 264 3806 2576 1370  24.81 5
Rotation [26] 31.14  48.14  47.40 4126 5820 5072 2600 4327
otaho Ours 1902 2576  33.60 2560 3892 2978 1538  26.87 4
Protorvical [26] 1874  33.68 3472 2606 4236 33.14 1634 2929
P Ours 1702 2148 28.66 2106 3504 2356 1306 22845

Table 1: Our attack consistently boost adversarial transferability across ImageNet trained models. Our
training approach (Algo. 1) hence prove to be complimentary to autoencoders trained with different
self-supervised (SS) tasks. Results (Top-1 (%), lower is better) are reported on 5k images from Ima-
geNet validation set introduced by [26] under the same perceptual budget (€ < 0.1).

Table 2: Comparative analysis of

Transformation Method Deit-T Deit-S VIiT-T ViT-S Average ) . .
adversarial transferability for Vi-

[26] 453 6242 36.62 62.1 51.61

Jigsaw Ous 4350 5950 180 5248 433740 sion Transf.orm.ers models on Im-
ool ol 60 38 o3 sis ageNet validation set. The Top-
Rotation Ours 4084 5522 1064 48.62 410804, | (%) under Lo bound £ = 0.1
is shown (lower is better). Our
Prototypical [26] 38.18 5496 21.5 50.28 41.23 thod £ £ bl M
P Ours 3416 5154 1674 453 3694,  nethodperiorms favorably well.

Figure 3: Models trained
on l. examples and large
norm distance are less vul-
nerable to our attack, how-
ever, such models also lose
accuracy on clean images

0 0.5 1 2 4 8 0 0.1 0.5 1 3 5 [42] .
l.-norm Distance l>-norm Distance

Accuracy Top-1 (%)

Accuracy Top-1 (%)

o Jigsaw (Ours)

(2k samples) validation sets respectively.

Baseline Adversarial Attack: For adversarial prototypical training, we use the same super-
vised attack objective as proposed by [26] for direct comparison. Specifically, we use 200
iterations of [-FGSM [24] followed by 100 iterations of ILA [20]. The attack objective for
the surrogate models trained in self-supervised manner is simply based on maximizing the
reconstruction error as described in Eq. 1.

4.1 Results
4.1.1 Transferability from Few In-Domain Samples

Our surrogate models trained on few data samples show significantly higher adversarial
transferability as compared to the baseline [26]. Attack generated on our self-supervised
models (rotation, and jigsaw) performs even better than supervised (prototypical) models of
[26] (Tables 1, 2). Our approach further boosts the transferability rates when combined with
supervised adversarial prototypical training. This compliments the benefits of our method in
both supervised and self-supervised settings. We observe that vision transformers are more
robust as compared to convolutional networks against such attacks [34], however, our ap-
proach provides non-trivial gains in fooling the Vision Transformers (Table 2). Similarly,
adversarially robust models [42] are less vulnerable to such attacks (Fig. 3).
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Transformation Method (=) [26] Ours Table 3: Adversarial perturbations are transferred from

CoCo 2856 23.31 a single auto-encoder trained on CoCo, Painintgs or
Rotation Paintings  27.83 17.75 Comics. We report average of Top-1 (%) accuracy

Comics 58.38 24.19 . .
against targeted conovlutional networks (Table 1). Our
CoCo 4393 31.28 . f; .
. 0 proposed approach provide favorable results (lower is
Jigsaw Paintings 44.07 33.42 b
Comics 6770 4154 etter).
Transformation (}) | Dataset (—) | CoCo | Paintings Comics Transformation (]) | Dataset () | CoCo | Paintings Comics
No Attack|[26] Ours|[26] Ours [26] Ours No Attack|[26] Ours|[26] Ours| [26] Ours
Rotation 39.7 193 14.6 [17.2 11.9 ‘34,3 133 Rotation 61.8 532 48.9 [52.6 46.9 |57.78 47.81
Jigsaw | 397 [247 145|241 14 |38 208 Jigsaw | 618 |539 46.6 |532 485 |58.29 51.65

Table 4: Adversarial transferability to object de- Table 5: Adversarial transferability to object seg-
tector (DETR) based on mAP at [0.5:0.95] is eval- mentation (DINO) based on Jacard index metric is
uated on CoCo validation set [27]. evaluated on DAVIS validation set [40].

4.1.2 Transferability from Cross-Domain Samples

Extra unsupervised data can boost the performance of adversarial training [7]. We extend our
approach to large-scale, unlabelled datasets to observe its effect on adversarial transferability
of our approach as explained below. All surrogate models are trained for 50 epochs for cross-
task adversarial transferability experiments.

Classification: In this task, we train a single autoencoder and transfer its adversarial pertur-
bations to ImageNet trained convolutional models as described in Sec. 3. We observe that
our proposed adversarial training significantly improves upon the baseline [26] (Table 3). We
further note that the surrogate models trained on ‘paintings’ dataset show higher adversarial
transferability while ‘Rotation’ as pixel transformation performs better. Further analysis on
adversarial transferability of our attack is provided in Appendix A.

Object Detection and Segmentation: Our adversarial attack based on simple transformed
reconstruction error (Eq. 1) compliments our proposed adversarial training and successfully
fools DETR for object detection and DINO for video segmentation (Tables 4 & 5). This
signifies that our attack can be launched in real-world setting without any knowledge about
the deployed vision system.

4.2 Ablative Analysis

We thoroughly analyze and develop better understanding about the behavior of our approach
by studying the effect of its different components including, a) Effect of Adversarial Pixel
Restoration Prior on Training, b) Effect of Perceptual Budget € for our Single step Attack
(Eq. 1), ¢) Effect of Iterative Attack during Training, d) Effect of Training Iterations and
Data size, and e) Contribution of Losses. All ablative experiments are conducted in limited
data setting (Sec. 4.1.1).

Effect of Adversarial Pixel Restoration Prior: The number of parameters of the surrogate
model are significantly higher than the number of input samples, a simple objective of recon-
structing the original image can lead to identical mapping. While adding pixel transforma-
tions (such as rotation or jigsaw) somewhat alleviates this problem, our adversarial denois-
ing with pixel transformation further resolves it by lowering overfitting, resulting in better
generalizability. Fig. 5 (left) shows training loss comparison between simple reconstruc-
tion objective (Naive), [26] and our method. The surrogate auto-encoder quickly collapses
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Figure 4: Loss landscape of surrogate models with increasing perceptual budget from left to right. The
first row shows the loss surface on the clean samples, while as the second row plots the loss surface
with respect to the corresponding adversaries.

Perceptual Budget £ (=) | % | 2% | = Training Loss (=) | Low | Lou + L feature
Rotation | 26.87 | 27.86 | 34.01 Rotation | 20.62 | 2687303
Jigsaw | 24.81 | 27.77 | 35.94 Jigsaw | 2713 | 2481045
Prototypical | 22.84 | 22.30 | 24.04 Prototypical | 23.98 | 22.84c0s1)

Table 6: Effect of Perceptual Budget (¢). Top-1 Table 7: Contribution of Loss components. Top-

average accuracy is reported on convolution net- 1 average accuracy is reported on convolution net-

works under limited data constraint (Table 1). works under limited data constraint (Table 1).

to identity as the training loss overfits early on in training without using pixel restoration
as prior. On the other hand, our approach allows meaningful representation learning with
higher iterations.

Effect of Perceptual Budget (¢): Our adversarial training (Algo. 1) is computationally ef-
ficient as it is based on a single attack (maximization) step. The effect of attack step size on
model generalizability and hence its transferability is presented in Table 6. We observe that
adversarial perturbation computed on models trained with a smaller € results in significant
improvements in terms of attack transferability. In Fig. 4, we plot the loss surface around
clean and adversarial examples on surrogate models trained with increasing perceptual bud-
get. While the loss surface around clean examples becomes smoother as perceptual budget
increases, it becomes harder to maximize the reconstruction error or flip decisions on the ex-
cessively smooth loss surface during attack. This behaviour is in line with [47] which shows
that slightly robust classifier models generate highly transferable adversarial examples. This
is further evident by the shift in attention caused by our method (Fig. 7).

Effect of Iterative Attack: During our adversarial training, increasing the attack iterations
does not help to further boost the adversarial transferability; rather, performance often de-
grades significantly. In Fig. 5 (right), attack loss is plotted for surrogate models (at pere-
ceptual budget € = 4) trained with different number of attack iteration (or maximization
steps).As the surrogate model becomes more robust with increasing attack iterations, we
notice that maximizing the attack objective becomes more challenging.

Contribution of Losses: We explore the effect of our proposed pixel and feature reconstruc-
tion losses (Eq. 5) in Table 7. We observe that feature reconstruction compliments the pixel
reconstruction and leads to better surrogate model with more transferable adversarial space.

Training iterations and Data Size: We explore the effect on transferability of surrogate
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Figure 5: Comparing effect
of Adversarial Pixel Restora-
tion Prior on the training loss
of surrogate models(/eft) and
effect of increasing maximiza-
tion steps during training on
Tterations """ lterations the attack loss(left).

Attack Loss

Train Loss

Figure 6: Top-1 (%) aver-
age accuracy against convolu-
tional networks. The perfor-
mance of our method improves
with more training iterations
and data size in contrast to the

1000 2000 3000 4000 5000 2 20 1  baseline [26].
Iterations Data Size

Accuracy Top-1 (%)

ccuracy Top-1 (%)

Figure 7: GradCAM [44] explanation of adver-
sarial examples. The activation maps were gen-
erated on ImageNet pretrained ResNet50 model.
Adversarial examples are transferred from surro-
| gate trained via our adversarial rotation restora-
tion task at the perceptual budget of € < 0.1 [26].
Our approach significantly shifts the attention of
“' the model, boosting the mis-classifcation rates
) 88 on the adversarial examples (see Appendix C for

.. more qualitative examples).
Samples Clean Maps [26] Ours

(e

models w.r.t a) training iterations, and b) the number of data samples in Fig. 6. Note that
[26] trains a single autoencoder on 20 samples and thus needs 250 autoencoder to attack 5k
ImageNet validation samples. The number of autoencoders increases to 2.5k when only 2
samples are available for training of single model. In the same setting, the performance of
our method improves with more iterations (Fig. 6 left plot) in contrast to [26]. We report av-
erage Top-1 (%) accuracy across all convolutional models (lower is better). Similarly, as we
increase the number of data samples during training and reduce the number of autoencoders,
the performance of our approach significantly improves as compared to the baseline [26].
This indicates that our adversarial objective successfully reduces overfitting while increases
generalizability of crafted adversarial perturbations.

5 Conclusion

In this work, we show the benefits of adversarial training to learn transferable adversarial
perturbations. Our approach trains an effective surrogate by learning to restore adversarial
pixel transformations created via our proposed attack. Our adversarial training reduces over-
fitting during training and can exploit very few data samples to learn meaningful adversarial
features while it can also scale to large unsupervised datasets. Our attack is task indepen-
dent and allows cross-domain attacks (e.g., learning surrogate on comics and transferring its
perturbations to models trained on natural images). Our results bring attention to the use of
self-supervised adversarial training for transferable adversarial attacks.


Citation
Citation
{Li, Guo, and Chen} 2020

Citation
Citation
{Li, Guo, and Chen} 2020

Citation
Citation
{Selvaraju, Cogswell, Das, Vedantam, Parikh, and Batra} 2017

Citation
Citation
{Li, Guo, and Chen} 2020

Citation
Citation
{Li, Guo, and Chen} 2020

Citation
Citation
{Li, Guo, and Chen} 2020

Citation
Citation
{Li, Guo, and Chen} 2020


MALIK ET.AL: ADVERSARIAL PIXEL RESTORATION 11

References

[1]

(2]

[5]

[6]

(10]

(11]

[12]

[13]

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples. In International
Conference on Machine Learning (ICML), 2018.

Cenk Bircanoglu. Comic books classification dataset : https://www.kaggle.

com/datasets/cenkbircanoglu/comic-books—-classification.
Kaggle, 2017.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial at-
tacks: Reliable attacks against black-box machine learning models. In Infernational
Conference on Learning Representations (ICLR), 2018.

Painter by Number. https://www.kaggle.com/c/painter-by-numbers/
data. Kaggle, 2017.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kir-
illov, and Sergey Zagoruyko. End-to-end object detection with transformers. In Euro-
pean conference on computer vision (ECCV). Springer, 2020.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural net-
works. In IEEE Symposium on Security and Privacy (SP), 2017.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang.
Unlabeled data improves adversarial robustness. Advances in Neural Information Pro-
cessing Systems (NeurlIPS), 2019.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. Emerging properties in self-supervised vision trans-
formers. In Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), 2021.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth
order optimization based black-box attacks to deep neural networks without training
substitute models. In Proceedings of the 10th ACM workshop on artificial intelligence
and security, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2009.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Xiaolin Hu, and Jun Zhu. Discovering
adversarial examples with momentum. arXiv preprint arXiv:1710.06081, 2017.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jian-
guo Li. Boosting adversarial attacks with momentum. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929, 2020.


https://www.kaggle.com/datasets/cenkbircanoglu/comic-books-classification
https://www.kaggle.com/datasets/cenkbircanoglu/comic-books-classification
https://www.kaggle.com/c/painter-by-numbers/data
https://www.kaggle.com/c/painter-by-numbers/data

12

MALIK ET.AL: ADVERSARIAL PIXEL RESTORATION

[14]

[15]

(16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

[25]

(26]

[27]

Lianli Gao, Qilong Zhang, Jingkuan Song, and Heng Tao Shen. Patch-wise++ pertur-
bation for adversarial targeted attacks. arXiv preprint arXiv:2012.15503, 2020.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation
learning by predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness-
ing adversarial examples. In International Conference on Learning Representations
(ICLR), 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge Belongie, and Ser-Nam Lim.
Enhancing adversarial example transferability with an intermediate level attack. In
Proceedings of the IEEE/CVF international conference on computer vision (ICCV),
2019.

Nathan Inkawhich, Kevin Liang, Binghui Wang, Matthew Inkawhich, Lawrence Carin,
and Yiran Chen. Perturbing across the feature hierarchy to improve standard and strict
blackbox attack transferability. Advances in Neural Information Processing Systems
(NeurlIPS), 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at
scale. arXiv preprint arXiv:1611.01236, 2016.

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the
physical world. In Artificial intelligence safety and security, pages 99-112. Chapman
and Hall/CRC, 2018.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing
the loss landscape of neural nets. Advances in neural information processing systems
(NeurlPS), 2018.

Qizhang Li, Yiwen Guo, and Hao Chen. Practical no-box adversarial attacks against
dnns. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in
context. In European conference on computer vision (ECCV). Springer, 2014.



MALIK ET.AL: ADVERSARIAL PIXEL RESTORATION 13

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In In-
ternational Conference on Learning Representations (ICLR), 2018.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. DeepFool:
a simple and accurate method to fool deep neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Nina Narodytska and Shiva Kasiviswanathan. Simple black-box adversarial attacks on
deep neural networks. In Computer Vision and Pattern Recognition (CVPR) Workshop,
2017.

Muhammad Muzammal Naseer, Salman H Khan, Muhammad Haris Khan, Fahad
Shahbaz Khan, and Fatih Porikli. Cross-domain transferability of adversarial perturba-
tions. Advances in Neural Information Processing Systems (NeurlPS), 2019.

Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih
Porikli. A self-supervised approach for adversarial robustness. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih
Porikli. On generating transferable targeted perturbations. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), October 2021.

Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fa-
had Shahbaz Khan, and Ming-Hsuan Yang. Intriguing properties of vision transform-
ers. Advances in Neural Information Processing Systems (NeurIPS), 2021.

Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Shahbaz Khan, and

Fatih Porikli. On improving adversarial transferability of vision transformers. arXiv
preprint arXiv:2106.04169, 2021.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by
solving jigsaw puzzles. In European conference on computer vision (ECCV), 2016.

Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples. arXiv
preprint arXiv:1605.07277, 2016.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. The limitations of deep learning in adversarial settings. In
Euro S&P, 2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning. In Asia
Conference on Computer and Communications Security, 2017.

Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeldez, Alex Sorkine-
Hornung, and Luc Van Gool. The 2017 davis challenge on video object segmentation.
arXiv preprint arXiv:1704.00675, 2017.



14

MALIK ET.AL: ADVERSARIAL PIXEL RESTORATION

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Belongie. Generative adver-
sarial perturbations. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry.
Do adversarially robust imagenet models transfer better? Advances in Neural Informa-
tion Processing Systems (NeurlPS), 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations
(ICLR), 2015.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot
learning. Advances in neural information processing systems (NeurIPS), 2017.

Jacob Springer, Melanie Mitchell, and Garrett Kenyon. A little robustness goes a long
way: Leveraging robust features for targeted transfer attacks. Advances in Neural
Information Processing Systems (NeurIPS), 2021.

Jacob M Springer, Melanie Mitchell, and Garrett T Kenyon. Adversarial perturbations
are not so weird: Entanglement of robust and non-robust features in neural network
classifiers. arXiv preprint arXiv:2102.05110, 2021.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In International
Conference on Learning Representations (ICLR), 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wo-
jna. Rethinking the inception architecture for computer vision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Conference
(CVPR), 2016.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablay-
rolles, and Hervé Jégou. Training data-efficient image transformers & distillation
through attention. In International Conference on Machine Learning (ICML), 2021.

Florian Tramer, Alexey Kurakin, Nicolas Papernot, lan Goodfellow, Dan Boneh, and
Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204, 2017.

Xiaosen Wang, Xuanran He, Jingdong Wang, and Kun He. Admix: Enhancing the
transferability of adversarial attacks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2021.



MALIK ET.AL: ADVERSARIAL PIXEL RESTORATION 15

[54] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and
Alan L Yuille. Improving transferability of adversarial examples with input diversity. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[55] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine
Vision Conference (BMVC), 2016.

[56] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Un-
derstanding deep learning (still) requires rethinking generalization. Communications
of the ACM, 64(3):107-115, 2021.

[57] Mingyi Zhou, Jing Wu, Yipeng Liu, Shuaicheng Liu, and Ce Zhu. Dast: Data-free
substitute training for adversarial attacks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.



