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Appendix
We provide transferability results of our self-supervised adversarial perturbations com-

puted at lower perceptual budget (ℓ∞ ≤ 0.08) for in-domain (Tables 8 & 9) and cross-domain
(Table 10) settings in Appendix A. Our Adversarial Pixel Restoration approach remains
effective as compared to the baseline [26] in fooling the Convolutional Networks, Vision
Transformers as well as state-of-the-art input processing defense [32] (Fig. 8 & 9 in Ap-
pendix A.1). In appendix B and C, we visualize adversarial examples and analyze the atten-
tion shift cause by our attack, respectively. Finally, in appendix D, we provide psuedocode
for self-supervised adversarial training of surrogate models using our approach.

A Adversarial Transferability under ℓ∞ ≤ 0.08

Transformation Method VGG-19 Inc-V3 Res152 Dense121 SeNet WRN MNet-V2 Average

Jigsaw
[26] 40.00 58.20 55.66 50.30 66.62 59.52 34.60 52.13
Ours 30.88 37.82 46.14 38.04 52.18 42.62 26.32 39.14(-12.99)

Rotation
[26] 38.88 56.16 57.06 49.56 65.30 58.14 34.64 51.39
Ours 33.48 37.78 47.16 38.98 52.96 43.74 28.52 40.37(-11.02)

Prototypical
[26] 30.08 45.74 47.28 37.66 54.42 44.82 27.32 41.05
Ours 30.44 31.96 42.76 34.50 49.20 38.80 23.94 35.94(-5.11)

Table 8: Comparative analysis of adversarial transferability. Results (top-1 (%), lower is
better) are reported on 5k images from ImageNet validation set under the perceptual budget
of ε ≤ 0.08. Our attack provides favorable results as compared to [26].

Transformation Method Deit-T Deit-S ViT-T ViT-S Average

Jigsaw
[26] 51.32 68.26 46.68 68.16 58.61
Ours 53.48 67.50 32.78 62.60 54.09(-4.52)

Rotation
[26] 53.22 68.36 47.94 66.72 59.06
Ours 51.16 66.10 32.68 60.20 52.54(-6.52)

Prototypical
[26] 47.44 64.22 32.94 60.06 51.17
Ours 45.70 62.26 29.50 57.98 48.86(-2.31)

Table 9: Comparative analysis of
adversarial transferability for Vi-
sion Transformers on 5k images
[26] from ImageNet validation set
under the perceptual budget of ε ≤
0.08. ViTs are relatively more ro-
bust as compared to CNNs.

Convolutional Networks Vision Transformers
Transformation Method (→) [26] Ours [26] Ours

Rotation
CoCo 38.47 35.72 48.24 46.44
Paintings 36.81 30.48 45.92 42.04
Comics 62.46 39.16 70.39 53.03

Jigsaw
CoCo 51.75 43.6 61.95 55.36
Paintings 51.56 44.42 61.59 56.64
Comics 69.89 52.65 75.66 62.15

Table 10: Adversarial perturbations (ε = 0.08) are transferred from a single surrogate auto-encoder
trained on CoCo, Paintings or Comics datasets to different Convolutional and Transformer based mod-
els. Results ( top-1 (%) accuracy, lower is better) are averaged across all models. Details on these
models are provide in Sec. 4
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A.1 Adversarial Transferability against Neural Purification Defense

Figure 8: We test the vulnerability of the state-of-the-art input processing defense NRP [32] against
our self-supervised attack. Adversarial perturbations are transferred from auto-encoders under the
constraint of limited in-domain samples [26] to Convolutional Networks (left plot), and Vision Trans-
formers (right plot) protected by NRP defense. We report Top-1 (%) (lower is better) averaged across
the models. Our method consistently improves the attack success rate.

Figure 9: We test the vulnerability of the state-of-the-art input processing defense NRP [32] against
our self-supervised attack under cross-domain setting (Sec. 4). Adversarial perturbations are trans-
ferred from single auto-encoder trained on CoCo, Paintings or Comics to Convolutional Networks (left
plot), and Vision Transformers (right plot) protected by NRP defense. We report Top-1 (%) (lower is
better) averaged across the models. Our method consistently improves the attack success rate.

B Adversarial Examples

Figure 10: Adversarial examples crafted on surrogate models trained on limited data, with perturba-
tion bound ε ≤ 0.1. The top and bottom row show adversarial examples crafted on surrogate model
trained using [26] and ours method, respectively.
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C Attention Dispersion

Samples Clean Maps [26] Ours

Figure 11: GradCAM [44] explanation of ad-
versarial examples. The activation maps were
generated on ImageNet pretrained ResNet50
model. Adversarial examples are transferred
from surrogate trained via our adversarial rota-
tion restoration task at the perceptual budget of
ε ≤ 0.1 [26]. Our approach significantly shifts
the attention of the model, boosting the mis-
classifcation rates on the adversarial examples.

D Training Algorithm

Algorithm 2 Adversarial Pixel Restoration: Pytorch style Pseudocode

def train(model, optimizer, images, iterations, fgsm_step):
"""
images: images shaped (B, C, H, W)
model: autoencoder
"""
attack = FGSM(model, eps=fgsm_step)
target_images = images.clone()

for i in range(iterations):

# Generate adversarial images
transformed_images = transform(images)
adv_images = attack(transformed_images, target_images)

# Get the encoder features and output
clean_output, clean_enc_output = model(transformed_images)
adv_output, adv_enc_output = model(adv_images)

# Compute losses
clean_loss = nn.MSELoss()(clean_output, target_images)
adv_loss = nn.MSELoss()(adv_output, target_images)
feat_loss = nn.MSELoss()(adv_enc_output, clean_enc_output)
loss = clean_loss + adv_loss + feat_loss

# Update model parameters
optimizer.zero_grad()
loss.backward()
optimizer.step()
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