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MOTIVATION

0 Current supervised appearance-based gaze estimation methods cannot generalize well to

——————————— Transfer Learning - ---=-=-—-==---~-

novel distributions. A possible solution: acquisition of larger in-the-wild, gaze-annotated
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unscalable and laborious process.

appearance and geometric transformations. However, gaze estimation requires equivariance  Frig 1, Qverview. Stage 1) Self-Supervised Pre-training, Stage 2) Supervised Fine-tuning.
under geometric transformations.
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0 An alternative solution: leveraging large-scale unlabeled face images using self-supervised

learning (SSL). However, current SSL methods [1] learn an invariant representation under

PROPOSED APPROACH EXPERIMENTS AND RESULTS

L1 Pre-training datasets: ETH-XGaze (w/o lablels) and VGGFace
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"tlrn— Ercades a—E & s et Fine-tuning datasets: ETH-XGaze, Gaze360, MPIIFace, and MPlIFace* (unnormalized)
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Fig 2. Left. SWAT overview. Right. Details of the feature transform layer (FTL).
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0 Pretext task:
. , , , Fig 4. Results of evaluating the unsupervised features. Fig 5. Results of semi-supervised learning.
Maximize agreement between two differently transformed views of the same image.

0 Maximizing agreement using SWAV [1]: an online clustering-based method.

Swapped prediction of cluster assignments computed from vector representations.

Lswav =0(z1,¢2) + (22, c1) o SWAT-VGGFace achieves the lowest error compared to other pre-training schemes.
0 SWAT-VGGFace outperforms ImageNet supervised features.

0 SWAT: Swapping Affine Transformations

1) Swap the affine transformations applied in image space, 2) Apply the swapped
transformations to vector representations via feature transform layer, 3) Maximize 0 SWAT achieves 1" less error compared to the supervised baseline when 10% and

agreement between transformation-equalized vectors. 30% of labels are used for fine-tuning.

Lowar = €(21,8E2) +{(Z2,¢1)

0 SWAT outperforms the
= Feature TranSform Layer (FTL) Method Pretrain Arch. ETH-XGaze Gaze360 MPIIFace MPIIFace® . p .
Feature-space equivalent of the image-space transformation. Ful-Face[42]  ImageNet  AlxNewSW  N/A NA 48 N/A supervised baseline on
Dilated-Net [6] ImageNet Dilated-CNN N/A N/A 4.8 N/A ll. b h k
RT-GENE [12] ImageNet VGG-16 N/A N/A 4.8 N/A all benchmarks (up to
Gaze360 [19] ImageNet ResNet-18 N/A 13.2 N/A N/A 2 5(/
MTGLS [13] MS-Celeb-1IM  ResNet-50 N/A 12.8 N/A N/A 0).
ETH-XGaze [45] ImageNet ResNet-50 4.5 N/A 4.8 7.17
o . . . Wu et al. [35] N/S ResNet-18 N/A 13.2 N/A N/A
1) Initialize CNN encoder with pre-trained weights of SwAT, 2) Attach a MLP head to Bascline (ours)  Random Init. _ ResNet-50 5.9 122 5.7 85 o SWAT achieves SoTA
1 - IN1Mi171 SwAT (ours) ETH-XGaze ResNet-50 4.5 11.9 5.2 7.5
regress gaze, 3) Fine-tune the whole network by minimizing L1 loss. e e e )y e i o results on ETH-XGaze,
, Gaze360, and
Tab 1. Comparison to state of the art.
MPIIFace*.
Original Color Drop Color Jitter
Method Train Test ETH-XGaze Gaze360 MPIFace MPIIFace* ] SWAT Outpe rfO 'Mms the
ETH-XGaze i 30.0 23.5 17.5 supervised baseline on
Supervised Gaze360 25.6 - 30.4 21.5
MPIIFace 32.2 27.4 i i all benchmarks.
MPIIFace* 35.5 28.9 - -
ETH-XGaze - 22.9 12.1 11.6 .
SwAT Gaze360 19.4 - 13.0 12.8 0 SWAT achieves up to 57%
"" MPIIFace 29.5 24.9 - - . .
Horizontal Rotation Scale Cutout Sobel Filtering MPIIFace* 32.6 25.5 - - relative improvement.
Flip
Fig 3. Explored transformations. Invariance vs. Equivariance. Tab 2. Cross-dataset evaluation.
CONCLUS[ONS B SWAV == == SWAT Relative Improvement . . 0
05 0 For rotation, on average, SWAT achieves 27%

/ relative improvement compared to SWAV.

0 SWAT Learns more informative representations than other pre-training schemes.
0 SWAT shows superior performance in low-data regimes.
0 SWAT outperforms the supervised baselines and state-of-the-art approaches for

0 For horizontal flip, SWAT improves SwAV

by 26%.
both within- and cross-dataset settings. 0 20 40 6 8 9 |
Rotation (degrees)
Logy = — fo (9 (x5)) — t5(fo(x:)]]2
[1] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Fig. 6. Equivariance analysis on Gaze360. e N Z H ¢( I( z)) F( qb( z))H

Unsupervised learning of visual features by contrasting cluster assignments. In NeurlPS, 2020.




