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   □ SwAT-VGGFace achieves the lowest error compared to other pre-training schemes.

   □ SwAT-VGGFace outperforms ImageNet supervised features.   
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Cross-dataset Evaluation

Equivariance Analysis

Comparison to state of the art

Pre-training datasets: ETH-XGaze (w/o lablels) and VGGFace

Fine-tuning datasets: ETH-XGaze, Gaze360, MPIIFace, and MPIIFace* (unnormalized)

Fig 2. Left. SwAT overview. Right. Details of the feature transform layer (FTL).

Tab 2.  Cross-dataset evaluation.

Fig. 6.  Equivariance analysis on Gaze360.

Tab 1. Comparison to state of the art.
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Motivation

Fig 1. Overview. Stage 1) Self-Supervised Pre-training, Stage 2) Supervised Fine-tuning.

Fig 4. Results of evaluating the unsupervised features. Fig 5. Results of semi-supervised learning. 

Motivation

Fig 3.  Explored transformations. Invariance vs. Equivariance.   

□ Current supervised appearance-based gaze estimation methods cannot generalize well to

 novel distributions. A possible solution: acquisition of larger in-the-wild, gaze-annotated 

datasets with more variability. However, collecting data with accurate gaze annotations is an 

unscalable and laborious process. 

□ An alternative solution: leveraging large-scale unlabeled face images using self-supervised

 learning (SSL). However, current SSL methods [1] learn an invariant representation under 

appearance and geometric transformations. However, gaze estimation requires equivariance 

under geometric transformations. 

 

□ SwAT: Swapping Affine Transformations  

   1) Swap the affine transformations applied in image space, 2) Apply the swapped 

   transformations to vector representations via feature transform layer, 3) Maximize 

   agreement between transformation-equalized vectors. 

□ Feature Transform Layer (FTL)    

   Feature-space equivalent of the image-space transformation.  

1) Initialize CNN encoder with pre-trained weights of SwAT, 2) Attach a MLP head to 

regress gaze, 3) Fine-tune the whole network by minimizing L1 loss.  

□ Pretext task:

   Maximize agreement between two differently transformed views of the same image. 

□ Maximizing agreement using SwAV [1]: an online clustering-based method.

   Swapped prediction of cluster assignments computed from vector representations. 

 

□ SwAT achieves 1° less error compared to the supervised baseline when 10%  and 

   30% of labels are used for fine-tuning.     

Conclusions

□ SwAT Learns more informative representations than other pre-training schemes.

□ SwAT shows superior performance in low-data regimes.

□ SwAT outperforms the supervised baselines and state-of-the-art approaches for

   both within- and cross-dataset settings.

□ SwAT outperforms the 

   supervised baseline on 

   all benchmarks (up to 

   25%).

 

□ SwAT achieves SoTA 

   results on ETH-XGaze, 

   Gaze360, and 

   MPIIFace*.

□ SwAT outperforms the 

   supervised baseline on 

   all benchmarks. 

□ SwAT achieves up to 57%

   relative improvement.

□ For rotation, on average, SwAT achieves 27% 

   relative improvement compared to SwAV.  

□ For horizontal flip, SwAT improves SwAV 

   by 26%.
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