

TOWARDS SELF-SUPERVISED GAZE ESTIMATION

UNIVERSITAT DE

BARCELONA

¹Sapienza University of Rome, ²Computer Vision Center, ³University of Barcelona

□ Current supervised appearance-based gaze estimation methods cannot generalize well to **novel distributions.** A possible solution: acquisition of larger in-the-wild, gaze-annotated datasets with more variability. However, collecting data with accurate gaze annotations is an unscalable and laborious process.

 An alternative solution: leveraging large-scale unlabeled face images using self-supervised learning (SSL). However, current SSL methods [1] learn an invariant representation under appearance and geometric transformations. However, gaze estimation requires equivariance under geometric transformations.

Fig 1. Overview. Stage 1) Self-Supervised Pre-training, Stage 2) Supervised Fine-tuning.

PROPOSED APPROACH

Fig 2. Left. SwAT overview. Right. Details of the feature transform layer (FTL).

SELF-SUPERVISED PRETRAINING

□ Pretext task:

Maximize agreement between two differently transformed views of the same image. Maximizing agreement using SwAV [1]: an online clustering-based method. Swapped prediction of cluster assignments computed from vector representations.

 $\mathcal{L}_{SwAV} = \ell(\boldsymbol{z}_1, \boldsymbol{c}_2) + \ell(\boldsymbol{z}_2, \boldsymbol{c}_1)$

EXPERIMENTS AND RESULTS

Pre-training datasets: ETH-XGaze (w/o lablels) and VGGFace Fine-tuning datasets: ETH-XGaze, Gaze360, MPIIFace, and MPIIFace* (unnormalized)

Fig 4. Results of evaluating the unsupervised features. Fig 5. Results of semi-supervised learning.

LINEAR PROBING (FIG.4)

□ SwAT-VGGFace achieves the lowest error compared to other pre-training schemes. □ SwAT-VGGFace outperforms ImageNet supervised features.

EQUIVARIANT REPRESENTATION LEARNING

SwAT: Swapping Affine Transformations

1) Swap the affine transformations applied in image space, 2) Apply the swapped transformations to vector representations via feature transform layer, 3) Maximize agreement between transformation-equalized vectors.

 $\mathcal{L}_{ ext{SwAT}} = \ell(ilde{m{z}}_1, ilde{m{c}}_2) + \ell(ilde{m{z}}_2, ilde{m{c}}_1)$

□ Feature Transform Layer (FTL)

Feature-space equivalent of the image-space transformation.

FINE-TUNING FOR GAZE ESTIMATION

1) Initialize CNN encoder with pre-trained weights of SwAT, 2) Attach a MLP head to regress gaze, 3) Fine-tune the whole network by minimizing L1 loss.

TRANSFORMATIONS

Color Jitter Color Drop

Blur Gaussian noise

SEMI-SUPERVISED LEARNING (FIG.5)

□ SwAT achieves 1° less error compared to the supervised baseline when 10% and 30% of labels are used for fine-tuning.

COMPARISON TO STATE OF THE ART

Method	Pretrain	Arch.	ETH-XGaze	Gaze360	MPIIFace	MPIIFace *
Full-Face [42]	ImageNet	AlexNet+SW	N/A	N/A	4.8	N/A
Dilated-Net [6]	ImageNet	Dilated-CNN	N/A	N/A	4.8	N/A
RT-GENE [12]	ImageNet	VGG-16	N/A	N/A	4.8	N/A
Gaze360 [19]	ImageNet	ResNet-18	N/A	13.2	N/A	N/A
MTGLS [13]	MS-Celeb-1M	ResNet-50	N/A	12.8	N/A	N/A
ETH-XGaze [45]	ImageNet	ResNet-50	4.5	N/A	4.8	7.1^{+}
Wu et al. [35]	N/S	ResNet-18	N/A	13.2	N/A	N/A
Baseline (ours)	Random Init.	ResNet-50	5.9	12.2	5.7	8.5
SwAT (ours)	ETH-XGaze	ResNet-50	4.5	11.9	5.2	7.5
SwAT (ours)	VGG-Face	ResNet-50	4.4	11.6	5.0	6.9

Tab 1. Comparison to state of the art.

AT outperforms the pervised baseline on benchmarks (up to %). AT achieves SoTA ults on ETH-XGaze, Gaze360, and

MPIIFace*.

CROSS-DATASET EVALUATION

Method	Test	ETH-XGaze	Gaze360	MPIIFace	MPIIFace*	SwAT outperforms the
	ETH-XGaze	-	30.0	23.5	17.5	supervised baseline on
Supervised	Gaze360	25.6	-	30.4	21.5	
_	MPIIFace	32.2	27.4	-	-	all benchmarks.
	MPIIEace*	35 5	28.9	_	_	

Horizontal Rotation Sobel Filtering Scale Cutout Flip

Fig 3. Explored transformations. Invariance vs. Equivariance.

CONCLUSIONS

□ SwAT Learns more informative representations than other pre-training schemes. SwAT shows superior performance in low-data regimes.

□ SwAT outperforms the supervised baselines and state-of-the-art approaches for both within- and cross-dataset settings.

[1] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised learning of visual features by contrasting cluster assignments. In NeurIPS, 2020.

	ETH-XGaze	-	22.9	12.1	11.6
SwAT	Gaze360	19.4	-	13.0	12.8
	MPIIFace	29.5	24.9	-	-
	MPIIFace*	32.6	25.5	-	-

□ SwAT achieves up to 57% relative improvement.

Tab 2. Cross-dataset evaluation.

EQUIVARIANCE ÁNALYSIS

