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Introduction

Structured light supervision Experimental Results

Our method

Differentiable rendering-based method [1]

Rendered image ResultObserved image

Input pattern images Result

Conventional structured light (SL) [2]

Failed to reconstruct the 
textureless and concave 
parts, because of the 
geometrical ambiguity of 
the observations. 

Incomplete for shiny object 
owing to the highlights in 
captured pattern images.
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Triangulation loss:
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Photometric supervision

Render loss :
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As the correspondences extracted using SL patterns are usually noisy and incomplete, we propose to consider rendered image 
consistency using the captured images w/o pattern.

Render 
loss

Combining SL and DR-based 
method
• SL supervision can provide 

important cues to reduce the 
geometrical ambiguity. 

• Incomplete part for SL pattern 
can be optimized through 
photometric supervision. 
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Quantitative evaluation with fixed ground truth camera poses 

Quantitative evaluation with noisy camera poses 

Evaluation on real-world dataset 

Initial Optimized

Direction (deg) 0.070 0.049

Position (m) 0.075 0.011

Comparison of camera poses between initial and optimized values

Modeled as the zero-
level set of an SDF, 
which is represented by 
an MLP 𝑓(𝒙;𝜽)

Represented by a color 
field using an MLP 
𝑐(𝑥, 𝑣; 𝜙)

Extrinsic parameters 𝝉

Exploiting the correspondences extracted by SL patterns as constraints during the optimization of 3D shapes and camera poses. 
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