iy
|

HIE=T 2022

P BMVC Multi-View Neural Surface Reconstruction with Structured Light
‘ — Chunyu Li, Taisuke Hashimoto, Eiichi Matsumoto, Hiroharu Kato

Preferred Networks, Inc.

Preferred
Networks

4 N
Introduction Overview roeied] | Captured images Estimation targets
Differentiable rendering-based method '] < patterns Camera a Camera b @
/ \ A Extrinsic parameters t
Failed to reconstruct the i Camera poses
Cameraa - P
textureless and concave with Structured light ?_P_F_'_TEG _
parts, because of the I] - - patterns supervision I Modeled as the zero-
endered image Observed ima Result geometrical ambiguity of _ .Our method q:] : N pairs level set of an SDF,
g ge esu the observations. y Combining SL and DR-based : which is represented by
Conventional structured light (SL) [2! > method | Projector 3D shape an MLP £ (x,6)
~ « SL supervision can provide
Incomplete for shiny object 'grggcr)r:’[eiz’églugriggrji?;ce the \ P / ] I
owing to the highlights in . ' | w/o Photometric EESUUEEE \epresented by a color
captured pattern images. Incomplete part for SL pattern Revolvin <M views >pattern L -] field using an MLP
_ result y can be optimized through 9 Camera b ) supervision : c(x,v; $)
Input pattern images esu Y photometric supervision. - Scene appearance
J
p

Structured light supervision

Exploiting the correspondences extracted by SL patterns as constraints during the optimization of 3D shapes and camera poses.
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Photometric supervision

As the correspondences extracted using SL patterns are usually noisy and incomplete, we propose to consider rendered image
consistency using the captured images w/o pattern.
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Experimental Results

Quantltatlve evaluatlon W|th fixed ground truth camera poses
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Evaluation on real-world dataset
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Comparison of camera poses between initial and optimized values

Initial Optimized

Direction (deg) 0.070 0.049

Position (m) 0.075 0.011
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