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1 Details on noise reduction
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Figure 1: Illustration of pattern misdetec-
tion caused by inter-reflection.

As described in Section 2.1 of the main paper,
we reduce the misdetection of the structured-
light pattern caused by inter-reflection by calcu-
lating the epipolar line between the projecter and
camera pair. To be specific, as shown in Fig. 1,
the light projected from the projector pixel qqq can
reach the camera in one of two general ways:
(1) by direct surface reflection, captured by a
camera pixel ppp on the epipolar line (black path),
which is the desirable path of the light for pat-
tern decoding, or (2) by inter-reflection, cap-
tured by a camera pixel ppp′ that is not on the
epipolar line (orange path). Therefore, we can
determine whether a decoded pixel is affected
by inter-reflection using the epipolar line. As the camera poses are unknown in our experi-
ment, we calculate a rough fundamental matrix between the camera and projector from the
noisy corresponding points using Ransac algorithm, and estimate the epipolar lines using this
fundamental matrix. Then, we eliminate correspondences whose camera pixels are not on
the epipolar line. Note that although we can effectively reduce most noise using this strategy,
some limitations remain: (1) the estimated epipolar lines may include minor errors owing to
the noisy corresponding points, and (2) we cannot eliminate the inter-reflected correspon-
dences whose projector and camera pixels are on corresponding epipolar lines. However,
the amount of noise caused by these cases is small, so they can be further reduced by the
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photometric supervision introduced in Section 2.4 of the main paper. The effectiveness of
this noise-reduction strategy is demonstrated by the ablation study (see Section 4.2 in sup-
plementary material).

2 Details on triangulation

In this section we will explain the details on the calculation of yyya and yyyb in Eq. (5) of the
main paper. yyya and yyyb are the nearest points between the two skew camera rays Ra(τ) and
Rb(τ) (see the right column of Fig. 4). We denote Ra(τ) = {oooa + tavvva | ta ≥ 0} and Rb(τ) =
{ooob + tbvvvb | tb ≥ 0}. The cross product of vvva and vvvb is perpendicular to the lines:

nnn = vvva × vvvb. (1)
The plane formed by the translations of Rb(τ) along nnn contains the point ooob and is perpen-
dicular to nnn1 = vvvb ×nnn. Therefore, the intersecting point of Ra(τ) with the above-mentioned
plane, which is also the point on Rb(τ) that is nearest to Ra(τ), is given by

yyya = oooa +
(ooob −oooa) ·nnn1

vvva ·nnn1
vvva. (2)

Similarly, the point on Rb(τ) nearest to Ra(τ) is given by

yyyb = ooob +
(oooa −ooob) ·nnn2

vvvb ·nnn2
vvvb, (3)

where nnn2 = vvva ×nnn.

3 Initial camera poses estimation for real-world dataset

In the experiment on real-world scenes, the initial camera poses were measured using 26
AprilTag 16h5 Markers [3] fixed on the turntable. We assume the intrinsic parameters of the
cameras are known. After capturing the multi-view input images, the initial camera poses
are estimated following four steps.

Step 1. Marker Detection: Given each image containing AprilTag 16h5 Markers, the de-
tection process has to return a list of detected markers. Each detected marker includes the
position of its four corners in the image and the id of the marker. This step is implemented
using OpenCV ArUco module [1].

Step 2. Camera Pose Initialization: The next thing is to obtain the camera pose from
detected markers. First, for each image, the pose of each marker in the camera coordinate
system is estimated individually using OpenCV ArUco module [1]. Then using one marker
as a reference , all camera poses in one coordinate system can be obtained by calculating the
3D transformation from each camera coordinate systems to the reference marker coordinate
system.

Step 3. Camera Pose Optimization: The camera poses obtained by Step 2 usually have
large error. Next they are optimized using bundle adjustment while simultaneously updating
the marker poses. Specifically, our bundle adjustment jointly refining the camera poses and
marker poses by minimizing the reprojection error of four corners of each marker.
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Accuracy Completeness 3D shape

Example input images Ground truth

Avg.: 0.0181 Avg.: 0.0143

Avg.: 0.0278 Avg.: 0.0243

Avg.: 0.0112 Avg.: 0.0265

1.000

0.000

0.002

0.026

0.130

0.410

Avg. of Acc. & Com.: 0.0162

Avg. of Acc. & Com.: 0.0261

Avg. of Acc. & Com.: 0.0189

(a) Stanford Bunny (glass)
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Example input images Ground truth

Avg.: 0.0129 Avg.: 0.0153

Avg.: 0.0282 Avg.: 0.0351

Avg.: 0.0091 Avg.: 0.0370

1.000

0.000

0.002

0.026

0.130

0.410

Avg. of Acc. & Com.: 0.0141

Avg. of Acc. & Com.: 0.0317

Avg. of Acc. & Com.: 0.0230

(b) Happy Buddha (metal)

Figure 2: Example input images, 3D reconstruction results, and their completeness and ac-
curacy errors on two additional synthetic scenes with fixed ground truth camera poses.

4 Additional experimental results

4.1 Simulation results

In this section, we show additional quantitative simulation results on a Stanford Bunny model
(Fig. 2 (a)), Happy Buddha model (Fig. 2 (b)) and a Lucy model (Fig. 3 (b)) obtained from the
Stanford 3D Scanning Repository [4] and a Chair model with thin structure downloaded from
the Internet [2]. To demonstrate the proposed method on the challenging targets, we rendered
the models from the Stanford 3D Scanning Repository with different shiny materials, such
as glass (Stanford Bunny), metal (Happy Buddha) and marble (Lucy). For each synthetic
scene, the input images are generated using the same setup as described in Section 4.1 of
the main paper. We used our method to generate 3D reconstructions in two different setups:
(1) fixed ground-truth camera poses and (2) trainable camera poses with noisy initializations
obtained using an SfM approach [5]. Fig. 2 shows the comparisons with baseline methods
with fixed ground truth camera poses. Fig. 3 shows the comparisons with baseline methods
with noisy camera poses calculated by Colmap. In Table 1 we show a comparison of camera
directions (Dire.) and positions (Posi.) between the noisy initial values and optimized values
(Opt.). Note the considerable improvement in optimized camera accuracy over initial values.
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Accuracy Completeness 3D shape

Example input images Ground truth
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Ours
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NeuS
(initial cameras trained)
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(initial cameras fixed)

(a) Chair
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Avg.: 0.1058 Avg.: 0.1085

Avg.: 0.1576 Avg.: 0.0491
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Ours
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NeuS
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SL
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(b) Lucy (marble)

Figure 3: Example input images, 3D reconstruction results, and their completeness and ac-
curacy errors on two additional synthetic scenes with noisy camera poses.

Table 1: Camera poses accuracy w.r.t the ground truth.
Chair Lucy

Initial Opt. Initial Opt.

Dire.(deg) 2.832 0.177 0.781 0.106
Posi.(m) 0.119 0.037 0.830 0.044

4.2 Ablation studies

We used the glossy marble Dragon model (the same scene in Fig. 6 of the main paper) to
conduct the ablation study. First, to confirm the contribution of the individual loss used
for structured-light supervision (reprojection loss LSR and triangulation loss LST), we test
following two cases: (a) w/o LSR (by setting λSR = 0), (b) w/o LST (by setting λST = 0). The
quantitative results are shown in Table 2. We can confirm that the (e) full model that uses both
of LSR and LST achieves the best result. We also studied the effect of the noise reduction of
decoding. The noises caused by inter-reflection leads to a deteriorated reconstruction quality
as shown in Table 2 (c) when compared with the (e) full model which reduced the noises. In
Table 2 (d) we show the result of training with fixed camera poses set to the inaccurate camera
initializations obtain with SfM [5]. This indicates that the joint optimization of camera poses
and 3D geometry is indeed significant.
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Table 2: Quantitative results of ablation studies.
Avg. of acc. Avg. of comp.

(a) w/o LSR 0.0101 0.0157
(b) w/o LST 0.0114 0.0160
(c) w/o noise reduction 0.0174 0.0183
(d) initial cameras fixed 0.0191 0.0194
(e) full model 0.0094 0.0155

NeuS OursSL Reference image
(a) Plastic bottle

NeuS OursSL Reference image

(b) Keyboard

Figure 4: Additional 3D reconstruction results on the real dataset.

4.3 Results for real-world scenes

In Fig. 4 we present additional qualitative results on the real dataset. The data acquisition
follows the same setup as described in Section 4.1 of main papaer. We can confirm that
proposed method perform better than all baseline methods.

4.4 Limitations

Although our method produces satisfactory results in most cases, it has several limitations.
First, the projector pattern will not be captured by the cameras, and no correspondences
can be obtained if the material of the object is mirror-like. In this case our method only
relies on photometric supervision. In Fig. 5 we show a failure case on a synthetic scene
with a textureless and mirror-like reflection. Our method fails to reconstruct an accurate
surface owing to the lack of structured-light supervision. It should be noted that this material
is also challenging for other state-of-the-art methods. Second, although our method can
optimize camera poses, it requires a reasonable camera pose initialization using markers or
SfM softwares.
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Input image example Our result

Figure 5: A failure case on a mirror-like object.
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