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Abstract
Although the demands of deploying deep models to the edge devices are proliferat-

ing, it is a challenging problem to compress image-to-image translation models based
on Generative Adversarial Networks (GANs). In particular, most of the compression
approaches do not apply to the GAN models. In this paper, we revisit weight prun-
ing approaches for GANs and theoretically build a novel perturbation model to analyze
the effect of pruning certain weights for the instance normalization (IN)-based image-
to-image translation GAN models. Furthermore, we develop a new training framework
by imposing perturbation-bound-induced pruning loss. In the experimental analysis, we
observe that the former pruning approaches do wrongly prune the channels with high vi-
sual impacts. We then depict the effectiveness of the proposed model by conducting both
on-training pruning and zero-shot pruning of current state-of-the-art models. Specifi-
cally, we compress the CycleGAN [51] model using the horse2zebra dataset. In the
on-training pruning task, we achieve ×5.31 and ×5.44 compression ratio to the origi-
nal model in terms of FLOPs and Memory consumption, respectively; In the zero-shot
pruning tasks, we obtain a decrease of 4.94 in the FID score compared to the best model
provided in OMGD [39], both with a negligible decrease in output visual quality.

1 Introduction
Deep learning has transitioned into an edge computing era, countless efforts have been made
to actualize the real-time execution of various computer vision tasks on the mobile phone, to
name a few [7, 13, 29, 32, 38, 41, 49]. Among them, one exciting application is the Gener-
ative Adversarial Network (GAN) [6] based image-to-image translation [51]. By translating
source images to another domain, it accomplishes a lot of visually appealing effects, such as
image synthesis [2, 48], style transfer [15, 18] or image enhancement [20, 44, 45].

However, GAN-based image-to-image translation is notorious for its computational re-
source intensity, limiting the deployment to edge devices. One reason is that the image-
to-image translation tasks have both their sources and outputs being spatially gigantic (e.g.
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(a) Input (b) un-pruned (c) eb=0.194 (d) eb=1.604 (e) eb=2.430

Figure 1: Examples of horse2zebra generation results using a pre-trained CycleGAN
with specific channels pruned. (a) the input image; (b) the generated zebra image using the
un-pruned model; (c)(d)(e) the generated zebra images when the channels with perturbation
error bounds (eb) of 0.194,1.604,2.430 pruned (See Section 5). It is conspicuous that the
appearances alter more severely as the perturbation error bound of the channel grows.

images of size 256×256×3 ), which results in dramatically increased computational com-
plexity if the number of hidden layer channels increases. There have been various methods
proposed to obtain more compact form of the generators in GANs, such as architecture
search [27, 28, 52], weight pruning [14, 22, 31, 34] and low-rank factorization [21, 37]. In
this work, we focus on the well-studied weight pruning approach and discuss its potential
improvement for the specified GAN compression task.

Most weight pruning methods start from defining a measure to calculating the impor-
tance of weights. The measure can either be heuristic or optimization-based. For instance,
the heuristic measures can be the magnitude of weights [7] or redundancy of channels (ap-
proximation error by linear combinations of others) [35]; the optimization-based measures
are usually adopted to the weights or activations in a multiplicative style, e.g. γ(WTX ), then
the measure γ is optimized during the training progress subjected to a regularization, such
as ℓ0 [10] or ℓ1 (LASSO) [34]. However, in practice, a direct adaptation of these measures
often suffers great performance decay compared with the original generator, as reported in
a former study [40]. From our initial experimental analysis, we observe that the measures
based on models designed for discriminative tasks, e.g. image classification, semantic seg-
mentation, are not always suitable for the GAN models. The major obstruction is that the
normalization operations, e.g. batch normalization [16], do not contribute much when mea-
suring the discriminativity of the weights (or learned feature representations)1. On the other
hand, the instance normalization [17, 42, 51] is the key feature for image-to-image transla-
tion GAN models. To prune weights of these models without a proper measure result in two
consequences: first, the visual concepts perceptible to humans may be modified; thus, the
outputs would look different than those from unpruned models; second, instability may hap-
pen during the training progress since the min-max GAN objective is known to be sensitive
to perturbations. We will demonstrate these problems in the experimental analysis.

In this study, we first introduce a measure that is specifically proposed for the image-to-
image translation GAN models equipped with the instance normalization (IN). Intuitively,
it depicts the contribution made from the input channels to the output channels, w.r.t. the
convolution and instance normalization parameters. We then represent a perturbation error
bound of pruning certain weights using this measure. To bring them to practical usage, we
propose a novel loss term during the training progress. The loss term distinguishes the im-
pacts of weights, i.e. weights that have fewer impacts on the outputs now will have a lower
bound, yet weights that have significant impacts on the outputs will be retained. Finally,

1Or assumed to be in many studies since the normalization is not thoroughly considered in the measures.
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we prune weights whose bound is below a certain threshold. We present the overall frame-
work as Bound-Induced GAN pruning (BIGP), the main contributions of this paper can be
summarized as follows:

• We propose a novel theoretical perturbation model, by which we rigorously prove its error
upper-bound caused by pruning channels of hidden layers. We verify this model using
zero-shot (without fine-tuning) pruning and indicate its effectiveness in the practical scene.

• We build a new loss term based on the error upper-bound analysis, as well as an on-
training pruning framework, which can be amalgamated with other knowledge distillation
approaches.

• In the experimental analysis, we demonstrate that the proposed on-training and zero-shot
pruning methods outperform the state-of-the-art results in terms of compression ratio, FID
score, training stability, and similarity to the uncompressed model.

2 Related Work
Taxonomy of Model Compression. The literature focusing on obtaining tiny and efficient
models can be generally classified into 5 categories: network architecture search (NAS) [5],
knowledge distillation [12], low-rank factorization [37], weight pruning [7] and quantiza-
tion [7]. Modern model compression systems often combine two or more approaches for
best practice. For instance, it is common to combine the knowledge distillation on a pruned
small network. Our work also follows this design, while the core contribution focuses on the
weight pruning part.
Weight Pruning of General Proposal. We briefly summarize the weight pruning related
works using the measure defined in their works. The most commonly employed measures
are heuristic (manually crafted), such as the weights with small values [8], influence caused
by pruning [19], magnitude of batch normalization [50], inactivity of neurons [14], entropy
of activations [33], neuron importance score [47] and weight similarity/redundancy [9]. An-
other branch is the optimization-based measure, they are used to the weights or activations
in a multiplicative style, e.g. γ(WTX ). During the optimizing progress, the γ is learned
subjected to a type of structured regularization, for instance, ℓ0 [10], ℓ1 (LASSO) [34] and
ℓ2 [46]. After optimization, the models are then pruned according to the sparse measure γ .
Compression Methods that are Specific to GANs. There have been several notable works
focusing on the compression of GAN models. A search-based channel pruning method
is proposed in [40]. The core idea is to search for the best student (pruned) architecture
that minimizes the reconstruction error using evolutionary algorithms (EA). Compared to
the multiple training progress that happened in EA, our method only needs to train once.
Yet we show that the choice of preserved channels is reasonably similar (92%+). Another
work [43] combines several well-developed methods to build a joint optimization framework
of knowledge distillation, pruning, and quantization. While the pruning progress is borrowed
from [34], this implementation holds the best on-training pruning performance currently.
Meanwhile, a series of full knowledge distillation approaches [1, 3, 24, 25, 26, 30, 39]
emerge recently. These works focus on building stable and semantic-rich distillation sys-
tems for a pre-defined small network. Compared to the on-training pruning approaches,
their small networks are either pruned after the training process or manually crafted. Our
work riches them with a new perturbation analysis and an effective GAN pruning method.
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3 Perturbation Analysis

We start with notation and review mathematical expressions of basic building blocks used in
our analysis, including instance normalization (IN) [42] and rectified linear unit (relu) [36]
operations for being self-contained.
Notation. In the work we denote scalars by italic letters, e.g., n,m ∈ R, and denote vectors
and matrices by boldface letters, e.g., a,b ∈ Rn and A,B ∈ RW×H . For higher-order tensors,
we denote them by calligraphic letters, e.g., X ,Y ∈ RC×W×H . For any integer k, we use [k]
to denote the set of integers from 1 to k. Supposing a mth-order tensor A∈Rn1×n2×···×nm , its
vectorization is defined as a = vec(A) ∈ R∏

m
i=1 ni , where its entries satisfy

A(i1, i2, . . . , im) = a
(
(im −1)n1 · · ·nm−1 + · · ·+(i2 −1)n1 + i1

)
, (1)

where i j ∈ [n j] for all j ∈ [m]. Given a vector a = [a0,a1, . . . ,an−1]
⊤ ∈ Rn, its involving

circulant matrix is represented by A = circ(a) ∈ Rn×n, where the (i, j)th entry of A satis-
fies A(i, j) = a( j−i)modn and “mod” denotes the modular operation. The operation ∥ · ∥ℓ1

denotes the ℓ1 norm and | · | denotes the absolute value of a scalar. In convolutional neu-
ral networks (CNNs), for a feature map X ∈ RC×W×H associated with C channels, width
W and height H, we compactly denote the features corresponding to the ith channel by
Xi ∈ RW×H , i ∈ [C], which equals the ith front slice of X .

Below, we provide a perturbation error bound of pruning a certain channel. Here we
consider the sequential concatenation of IN, relu and convolution (conv) as the basic
building block to construct (the generator of) GANs. Assuming the input feature map X ∈
RC×W×H of the channel C, width W and height H before conv we have2

IN: Yi = (Xi −µi)/σi, Si = γiYi +βi,

relu: Ti = relu(Si) ,

where µi,σi are the mean and variance, respectively, γi and βi are re-scalar parameters, and
i ∈ [C]. Furthermore, we assume the kernel tensor in conv as a fourth-order tensor W ∈
RC×D×K×K , of which K corresponds to the filter size and C,D corresponds to the input and
output channel size, respectively. Then the output of conv can be written as

Z =W ⋆T ∈ RD×W×H , (2)

where ⋆ denotes the convolution operator. Note that the bias term in the normal conv is
ignored since the following IN in the network will eliminate the effect by the bias. Below,
we first give the relationship between the output of conv and each channel of the input
feature map:

Lemma 1 Let yi = vec(Yi)∈RWH ,z∈RDWH be the vectorlization of Yi and Z respectively,
and define the vectors wi, j ∈ RWH , i ∈ [C], j ∈ [D], p,g ∈ [K], which satisfy

wi, j(l) =

{
W(i, j,g, p) if l = (g−1)H + p
0 otherwise , (3)

2Here we omit the stability constant ε for brevity of the theoretical discussion.
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where l ∈ [WH]. We then have the following equation hold:

z = ∑
i∈[C]


circ(wi,1)

...
circ(wi,D)


︸ ︷︷ ︸

Gi:=

relu(γiyi +βi) . (4)

The proof is given in the supplementary material. Since yi is the “normalization” of Xi,
the ith channel of the input feature map, Lemma 1 shows that the output of conv equals
the summation of non-linearizatrion of each channel of the input. It implies that pruning
each channel would impact the output independently even after the conv operation. Next,
we prove that the perturbation by pruning is ONLY determined by the learnable variables
including W,γ , and β . To achieve the goal, we first define a novel measure function, which
reflects the sensitivity of our (IN, relu, conv) system by the pruning operations.

Definition 1 (Sensitivity Measurement) Given the kernel W in conv, and the variables
γ,β in IN, we define the sensitivity measurement as a matrix function F(W,γ,β ) :RC×D×K×K ×
RC ×RC → RC×D, of which the (i, j)th entry Fi, j obeys

Fi, j (W,γ,β ) =
√

WH|γi|
√

∑
g,p∈[K]

W(i, j,g, p)2 + |βi|

∣∣∣∣∣∣ ∑
g,p∈[K]

W(i, j,g, p)

∣∣∣∣∣∣, (5)

where γi,βi, i ∈ [C] denotes the ith entry of γ and β , respectively.

Remark. As shown in Eq. (5), the function Fi, j is non-negative, and consists of the “strength”
of the (i, j)th filter in W weighed by γ and β . It implies that the (i, j)th entry of F reflects
the contribution from ith input channel to the jth output channel.

To validate this claim, we below prove that the perturbation of the output by pruning is
bounded by Eq. (5). Specifically,

Proposition 1 (Perturbation Error Bound) Assume Z ∈RD×W×H to be the output of conv,
and Z ī to denote the result by pruning the ith channel of the input. then the norm of per-
turbation ∆i = Z −Z ī is bounded by the following conditions: if γi = 0, then ∥∆i∥ℓ1

= 0;
otherwise, we have

∥∆i∥ℓ1
≤


WH ∑ j∈[D] Fi, j (W,γ,0) , βi ≥ τi
WH ∑ j∈[D] Fi, j (W,γ,β ) , |βi|< τi

0, otherwise
, (6)

where 0 ∈ RC denotes the full-zero vector and τi =
√

WH|γi| for all i ∈ [C].

It is worth noting that the conditions γi = 0 or βi ≤ − τi uncommonly happen in practice,
and pruning the corresponding channels does not affect the output. The proposition shows
that the perturbation error bound is fully determined by W,γ,β .
Proposition 1 implies the worst-case scenario when pruning a certain channel. There-
fore we could apply the perturbation error bound as a part of the loss function, by which we
enforce a part of the channels have smaller bounds than the rest. Then we could prune these
channels without having over-changed outcomes, resulting in better performance and more
stable training progress.
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4 Pruning Approach
We next demonstrate how to practically apply Eq. (6) to the pruning algorithm. We denote
G,D as the generator and discriminator in GANs, respectively. Since only the generator G
will be deployed on edge devices while the discriminator will be discarded after training.
Therefore, in this work, we only consider representing G with a more compact form.
Step 1, Use Perturbation Error Bound as a Loss. Assume W[l] ∈ RCl×Dl×Kl×Kl ,γ[l] ∈
RCl ,β[l] ∈ RCl to be all the learnable variables in the lth sub-block of G for l ∈ [L], then the
new loss function, namely Bound-Induced GAN pruning (BIG), is given by

LBIG({W[l]},{γ[l]},{β[beta]}) = ∑
l∈[L]

∑
i∈[Cl ]

Pl,i

(
W[l],γ[l],β[l]

)
. (7)

In the equation, Pl,i = 0 if γ[l],i = 0, while if γ[l],i ̸= 0, then

Pl,i =


∑ j∈[D] Fi, j

(
W[l],γ[l],0

)
, βi ≥ τ[l],i

∑ j∈[D] Fi, j

(
W[l],γ[l],β[l]

)
, |βi|< τ[l],i

0, otherwise

, (8)

where τ[l],i =
√

WlHl |γ[l],i| and Wl ,Hl denotes the width and height of the input feature map
in the lth block. We can see from Eqs. (7) and (8) that the new loss function is related to the
sum of perturbation bound given in Eq. (6). Therefore, minimizing the loss (7) will push
the model to learn more distinguish channels, which are selected to be pruned or not.
Here, by “distinguish”, we mean the contributions of channels to the output visual effect are
learned to be smaller or larger, hence we can prune the ones with small contributions. This is
achieved by the separated constrains define in (8). In practice (deployed in our experiment),
the overall loss function is suggested as

Lall = LGAN +λ1Ldist +λ2LBIG, (9)

where λ1,λ2 > 0 denotes the tuning parameters, LGAN and Ldist denote the ordinary GAN
loss and distillation loss [43], respectively. The details about these 2 losses are provided in
the supplementary material.
Step 2, Update Re-scalar Parameters as Pruning. During the training, we can assign the
re-scalar parameters IN to 0 to prune their corresponded channels once they cause only small
perturbations to outputs. Formally, at step t, we conduct the update γ

(t)
[l],i = β

(t)
[l],i = 0, if one

of the following four conditions is satisfied:

(i) β
(t−1)
[l],i ≤ − τ

(t−1)
[l],i ,

(ii) γ
(t−1)
[l],i = 0,

(iii)
∑ j∈[Dl ]

Fi, j

(
W(t−1)

[l] ,γ
(t−1)
[l] ,0

)
∑i∈[Cl ]

Pl,i

(
W(t−1)

[l] ,γ
(t−1)
[l] ,β

(t−1)
[l]

) < ρ1,

(iv)
∑ j∈[Dl ]

Fi, j

(
W(t−1)

[l] ,γ
(t−1)
[l] ,β

(t−1)
[l]

)
∑i∈[Cl ]

Pl,i

(
W(t−1)

[l] ,γ
(t−1)
[l] ,β

(t−1)
[l]

) < ρ2.

(10)
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Figure 2: Examples of CycleGAN pruning results. The methods and their FLOPs (in G) are
annotated above the images. Each row shows a different sample.

Table 1: Quantitative evaluation of GAN pruning results. CycleGAN donates the original
unpruned model. ↑ / ↓ means the larger/smaller value, the better compression performance.

Dataset Method FLOPs Memory FID(↓) rops(↑) rmem(↑)

horse2zebra

CycleGAN [51] 52.9G 43.51MB 74.04 1.00 1.00
GS32[43] 11.68G 9.1MB 91.46 4.53 4.78
BIGPStage1 39.87G 32MB 70.53 1.32 1.36
BIGPStage2 12.7G 10MB 77.89 4.17 4.35
BIGPStage3 9.97G 8MB 82.99 5.31 5.44

summer2winter

CycleGAN [51] 52.9G 43.51MB 77.76 1.00 1.00
GS32[43] 7.45G 6.62MB 80.60 7.10 6.57
BIGPStage1 41.11G 31.24MB 77.48 1.29 1.39
BIGPStage2 11.46 G 9.89MB 76.60 4.62 4.40
BIGPStage3 7.33G 6.51 MB 78.87 7.22 6.68

where ρ1,ρ2 > 0 denotes the hyper-parameters controlling the tolerance. Otherwise, they are
updated by the general gradient descent methods. That is

γ
(t)
[l],i = γ

(t−1)
[l],i −η

(t−1)
∇L(t−1)

all,γ , β
(t)
[l],i = β

(t−1)
[l],i −η

(t−1)
∇L(t−1)

all,β , (11)

where ∇L(t−1)
all,γ and ∇L(t−1)

all,β respectively denote the gradient of Lall w.r.t. γ
(t−1)
[l],i and β

(t−1)
[l],i ,

and η(t−1) denotes the learning rate at step t −1.

Insight of the (iii),(iv)th conditions in Eq. (10): Intuitively, the (iii),(iv)th conditions in
Eq. (10) reflect the ratio of the perturbation by pruning the ith channel. If the ith channel sat-
isfies the 3,4th conditions with small ρi, i = 1 or 2, it implies that the output of the lth block
would be not significantly changed even though discarding the ith channel. The difference
between the two conditions is that the fourth condition focuses on the first term in Eq. (5)
by setting βi = 0, while the third condition takes the whole values of Eq. (5) into account.
We suggest ρ1 ≪ ρ2 in practice (they roughly follow ρ1 = 1e− 4 and ρ2 = 1e− 3 in the
experiments).

In this work, we follow the training and pruning strategy in [43] yet γ , and β is updated
by the new form as mentioned beforehand. More details of the training and pruning methods
used in the experiment are introduced in the supplementary material.
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5 Experimental analysis
5.1 Dataset, Metrics and Configurations

Dataset. We employ the following 2 datasets in our experiments, and the details can be found
in [51]: Horse2zebra dataset is a subset of ImageNet-1K [4]. We employ 1,067 horse
images for training, 120 horse images, and 140 zebra images for testing; summer2winter
dataset is collected from Flickr. We employ 1,231 summer scenes for training and 309
summer and 240 winter scenes for testing. We employ the generated images for training
for distillation, which is a common choice for GAN compression. Generated images from
the teacher models help train the small models to output image styles closer to the teacher
models. We also employ the target domain datasets for the LGAN loss. Also, the target
domain image for testing is only employed for the calculation of the FID score.
Metrics. We employ 3 metrics to evaluate the performance, with G0 denoting the origi-
nal model and G denoting the model to be evaluated, respectively: Flops and its compres-
sion ratio rops = Flops of G0/Flops of G; Memory size and its compression ratio rmem =
Model size of G0/Model size of G; FID score [11] between the generated samples and the
test samples, which is used for evaluating the generation quality.
Configurations. We follow the major configuration used in Gan Slimming [43]. Here we
briefly introduce the multi-stage training strategy employed in the experiments.
Similar to the learning rate decay strategy adopted in the optimization progress, we also ad-
just the weight of LBIG, i.e., λ2; and the thresholds for pruning channels, i.e., ρ1,ρ2. We
use 3 sets of these hyper-parameters denoted as Stage1,Stage2,Stage3. The motivation is
that we first stabilize the training progress in Stage1, then perform pruning aggressively in
Stage2. Finally, we fine-tune the pruning results in Stage3. Although the training progress
is staged, only the fine-tuned model after Stage3 is the desired outcome. Detailed hyper-
parameters and the thresholds will be provided in the supplemental materials. We also con-
duct a training stability analysis in the supplementary materials to analyze the choice of the
three stages strategy.

5.2 Results

Comparison with Gan Slimming. Gan Slimming [43] is a commonly used baseline model
that integrates pruning, distillation, and quantization. Its pruning is achieved by the sparse
regularization term on the channels, which is currently the most applied approach. Therefore,
we conduct our experiments and pruning analysis based on this approach.

The qualitative and quantitative results are shown in Figure 2 and Table 1, respectively.
Our method is denoted as BIGP, with the stage subscripts. CycleGAN denotes the original
unpruned model, and GS32 denotes the best model reported in the Gan Slimming paper. It
can be seen that our Stage3 model has less computational complexity than GS32 in terms
of both Flops and Memory, and the visual quality of generated samples is also better than
the GS32 model in both datasets.
Zero-shot Model Pruning Analysis. We next conduct zero-shot model pruning experiments
to examine the correctness of our error model defined in Eq. (5). Zero-shot pruning means
removing (set to 000 matrix in practice) the channels without re-training or fine-tuning. The
target unpruned model is the super-network (Gsuper) provided in [23]. And for reference, we
also employ their pruned sub-network (Gsub) in [23] using the evolutionary algorithm. We
then prune the super-network to match the structure of the sub-network.
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We evaluated the effectiveness of the measures using two standards: the FID score and
the correlativity between pruned channels. The latter counts the number of pruned channels
in both the sub-network and the pruned network using a specific measure. Concretely, let
C= {ci, i ∈ [C]} be the set of channels in Gsuper, where C is the total number of channels. Let
P1 ⊂ C be the set of channels retained after pruning Gsuper, and let P2 ⊂ C be the channels
set of Gsub. Then we use eff = count(P1 ∩P2)/count(P2) to evaluate the correlativity.
Intuitively, the Gsub is a sub-optimized solution to the weights pruning problem. Therefore,
if the pruned channels obtained from a measure have high correlativity with that in Gsub, we
consider the measure has better effectiveness.

Table 2: Quantitative analysis of zero-shot pruning on the horse2zebra dataset.

(a) The comparison of computational cost. The
super-/sub-net are un-pruned and reference small
models from [23].

Method FLOPs Memory FID(↓) eff(↑)
super-net 4.59G 2.1MB 60.10 —
sub-net 2.35G 1.5MB 68.77 1.0
GS32 2.35G 1.5MB 188.56 0.5333
BIGP 2.35G 1.5MB 88.47 0.9291

(b) The comparison of channel importance mea-
sures. (B,C) stands for the C-th channel from the
B-th block.

(B,C) |γ| [34]
Error

Bound
Satisfy
Eq. (10) Influence

(6,101) 0.0240 101.12 ✗ Significant
(6,22) 0.2283 1.18 ✓ Trivial

The quantitative results are shown in Table 2a, and we provide qualitative results in the
supplementary materials. We compare with a baseline model that prunes channels randomly
(which can be seen as the ℓ1 norm [34] method without optimization, so we denote it as
GS32 for consistency). It can be seen that our proposed measure achieved a correlativity of
0.9291 with the sub-optimal solution.
Zero-shot Pruning on Distillation Models. Next, we graft our method to the distillation-
based methods that recently achieved state-of-the-art compression ratio and FID score. Con-
cretely, we conduct the following experiments: 1. Zero-shot pruning on the OMGD officially
released models; 2. Add the BIG loss term to OMGD [39] distillation framework, then con-
duct zero-shot pruning on the trained models. By this, we can examine the effectiveness
of the pruning error model. The details of the configurations and the channel analysis are
included in the supplementary materials. The results are reported in Table 3, the “+ZSP”
stands for zero-shot pruning the above models, and “+LBIG” stands for pre-training with the
BIG loss. We can see that, even in the currently reported best performance distillation mod-
els, there still exist channels that can be pruned without influencing the generation results.
Also, with our proposed BIG loss term, we achieve new state-of-the-art performance under
both datasets.

6 Conclusion
In this paper, we develop a novel perturbation model by which we prove the upper bound
of perturbations caused by pruning channels of hidden layers. Then we verify the proposed
model by conducting zero-shot (without fine-tuning) pruning and indicate its effectiveness
in the practical scene. Meanwhile, we suggest a new loss term and a training framework
conduct the pruning progress. Finally, in the experimental analysis, we demonstrate that
the proposed method outperforms the state-of-the-art method in terms of compression ratio,
training stability, and similarity to the uncompressed model.
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Table 3: Performance of knowledge distillation models combining the BIG loss pre-training
and/or zero-shot pruning. † stands for the officially released models, * stands for our pre-
trained models.

horse2zebra

Model FLOPs FID
# Chan.
Pruned

GAN-Comp. [23] 2.67G 64.95 –
DMAD [24] 2.41G 62.96 –

CAT [30] 2.55G 60.18 –
GCC [25] 2.40G 59.19 –

OMGD [39] 1.408G† 51.97 –
+ZSP 1.406G 51.70 2
+LBIG 1.408G∗ 46.72 –

+LBIG+ZSP 1.397G 47.03 10

summer2winter

Model FLOPs FID
# Chan.
Pruned

Auto-GAN [25] 4.34G 78.33 –
GAN-KD [1] 3.20G 80.10 –
SP-KD [26] 3.20G 76.59 –
DMAD [24] 3.18G 78.24 –

OMGD [39] 1.408G† 73.79 –
+ZSP 1.404G 73.70 6
+LBIG 1.408G∗ 73.12 –

+LBIG+ZSP 1.398G 73.13 9
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