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In this supplementary material, we provide detailed information on the following topics.

1. Proof of Lemma and Theorem (in Section 1).

2. Detailed pruning algorithm (in Section 2).

3. Detailed experiments configurations (in Section 3).

4. Additional experimental results (in Section 4).

1 Proofs
Below, we give detailed proofs of the results in the manuscript.

1.1 Detailed Definitions of IN and Relu
Instance normalization (IN) [12]. Suppose a feature map X ∈ RC×W×H , then its channel-
wise normalization, denoted by Y ∈ RC×W×H , is calculated by

Yi =
Xi −µi√

σ2
i + ε

, i ∈ [C]. (1)

where ε denotes a positive constant to avoid the zero value of the denominator and µi, σ2
i

are the mean and variance of Xi, i.e.,

µi =
1

WH ∑
j∈[W ],k∈[H]

X (i, j,k),

σ
2
i =

1
WH ∑

j∈[W ],k∈[H]

(
X (i, j,k)−µi

)2
,

(2)
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Figure 1: Illustration of the basic architecture of mage-to-image translation GANs, which are
set up by concatenating the block in the dotted box. The letters beside the arrows represent
the feature maps for each layer, which are used for derivation in Section 3 of the main
manuscripts.

respectively.
Subsequently, two trainable variables are imposed to rescale the mean and variance of

Yi, and the output of IN, denoted by S ∈ RC×W×H , is thus equal to

Si = γiYi +βi, i ∈ [C] (3)

where γi,βi represent the two trainable rescalars.
Rectified linear unit (relu) [10]. In the theoretical analysis, we use relu as the non-
linear activation function without loss of generality. Given a feature map X ∈ RC×W×H ,
relu outputs

Y(i1, i2, i3) = relu(X (i1, i2, i3)) =

{
0 if X (i1, i2, i3)< 0
X (i1, i2, i3) otherwise (4)

for all i j ∈ [n j],∀ j = 1,2,3. If fixing the ith channel, we then have

Yi = relu(Xi). (5)

Note from Eq. (3) and (5) that, each channel of X contributes the output of IN and relu
independently, that is, the ith channel of output is only determined by the ith channel of the
input. It allows us to analyze the pruning perturbation in a channel-wise fashion.

1.2 Proof of Lemma 1
Lemma 1. Let yi = vec(Yi)∈RWH ,z ∈RDWH be the vectorization of Yi and Z respectively,
and define the vectors wi, j ∈ RWH , i ∈ [C], j ∈ [D], which satisfy

wi, j(l) =

{
W(i, j,g, p) if l = (p−1)W +g
0 otherwise , (6)
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where l ∈ [WH]. We then have the following equation hold:

z = ∑
i∈[C]


circ(wi,1)
circ(wi,2)

...
circ(wi,D)


︸ ︷︷ ︸

Gi:=

relu(γiyi +βi) , (7)

where Gi ∈ RDWH×WH .

Proof. Follow the notations defined in the main manuscript, where Ti is the ith channel of
the output after relu, by the definition of conv1, the output Z can be rewritten as

Z = ∑
i∈[C]

Zi = ∑
i∈[C]

W(i, :, :, :)⋆Ti, (8)

where W(i, :, :, :) denotes the sub-tensor of W by fixing the first index equal i and Zi =W(i, :
, :, :)⋆Ti ∈ RD×W×H for all i ∈ [C].

Assuming hi, j =Ci, jti ∈RWH for i∈ [C], j ∈ [D] where Ci, j = circ(wi, j) and ti = vec(Ti),
for all k ∈ [W ], l ∈ [H] the following equations obeys:

hi, j
(
(l −1)W + k

)
(9)

= ∑
q∈[WH]

Ci, j
(
(l −1)W + k,q

)
ti(q) (10)

= ∑
q∈[WH]

wi, j

((
q− k− (l −1)W

)
mod(WH)

)
ti(q) (11)

= ∑
g,p∈[K]

W(i, j,g, p)ti
(
(l + p)W + k+g−1

)
(12)

=
(
W(i, j, :, :)⋆Ti

)
(l,k). (13)

Concatenating hi, j for all j ∈ [D] and using Eq. (8), we have

z = ∑
i∈[C]

zi (14)

= ∑
i∈[C]


circ(wi,1)
circ(wi,2)

...
circ(wi,D)

relu(γiyi +βi)︸ ︷︷ ︸
ti=

. (15)

The proof is done.

1In this paper, we specify the convolution operations to be the commonly used 3D-Conv with stride 1 in vision
models.
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1.3 Proof of Theorem 1

First, recall the definition of the sensitivity measurement used in the manuscript; we addi-
tionally provide the formal definition of the pruning operation.

Definition 1 (sensitivity measurement). Given the kernel W in conv, and the variables γ,β
in IN, we define the sensitivity measurement as a matrix function F(W,γ,β ) : RC×D×K×K ×
RC ×RC → RC×D, of which the (i, j)th entry Fi, j obeys

Fi, j (W,γ,β ) =
√

WH|γi|
√

∑
p,q∈[K]

W(i, j,g, p)2

+ |βi|

∣∣∣∣∣∣ ∑
p,q∈[K]

W(i, j,g, p)

∣∣∣∣∣∣
, (16)

where γi,βi, i ∈ [C] denotes the ith entry of γ and β , respectively.

Definition 2 (pruning the ith channel). To prune ith channel of the a tensor A ∈ RC×W×H ,
is to let the queries in the ith channel be 0, that is

Apruned, j =

{
A j if j ̸= j
0 if j = i . (17)

Remark. In the implementation, we apply a channel-wise weighting mask during training.
Thus we prune a channel by setting its weighting mask to zero. After the training, We extract
the compressed sub-network according to the mask.

Theorem 1. Assume Z ∈RD×W×H to be the output of conv, and Z ī to denote the result by
pruning the ith channel of the input. then the norm of perturbation ∆i = Z−Z ī is bounded
by the following conditions: if γi = 0, then ∥∆i∥ℓ1

= 0; otherwise, we have

∥∆i∥ℓ1
≤

WH ∑ j∈[D] Fi, j (W,γ,0) , βi ≥ τi
WH ∑ j∈[D] Fi, j (W,γ,β ) , |βi|< τi

0, otherwise

, (18)

where 0 ∈ RC denotes the full-zero vector and τi =
√

WH|γi| for all i ∈ [C].

Proof. Because Yi = (Xi −µi)/σi, where µi and σi are defined as in IN, yi = vec(Yi) and
i ∈ [C], we have ∥yi∥2 =

√
WH. Then by Lemma 1 and consider the influence of relu, we
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have

∆i = Z−Z ī (19)

=


circ(wi,1)
circ(wi,2)

...
circ(wi,D)

relu(γiyi +βi) (20)

=




circ(wi,1)

circ(wi,2)
...

circ(wi,D)

(γiyi +βi) if βi ⩾ τi > 0

0 if βi ⩽−τi < 0

sgn(βi) |βi|


circ(wi,1)

circ(wi,2)
...

circ(wi,D)

e if τi = 0


circ(wi,1)

circ(wi,2)
...

circ(wi,D)

relu(γiyi +βi) if |βi|< τi

(21)

where sgn( ·) denote the sign function, e ∈RC denotes the full-one vector and τi =
√

WH|γi|
for all i ∈ [C].

Due to the properties of IN, we have the following equations holds:

IN(circ(wi, j)(γiyi +βil)) = IN(circ(wi, j)(γiyi)), (22)

IN(circ(wi, j)(e)) = 0, (23)
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Therefore Eq. (21) can be further simplified as

∆i =



γi


circ(wi,1)

circ(wi,2)
...

circ(wi,D)

yi if βi ⩾ τi > 0

0 if βi ⩽−τi < 0
0 if τi = 0

circ(wi,1)

circ(wi,2)
...

circ(wi,D)

relu(γiyi +βi) if |βi|< τi

(24)

We now discuss the non-zero conditions, if βi ⩾ τi > 0, then∥∥γicirc(wi, j)yi
∥∥
ℓ1
⩽WHFi, j (W,γ,0) , j ∈ [D].

Hence for βi ⩾ τi > 0,

∥∆i∥ℓ1
= ∑

j∈[D]

∥∥γicirc(wi, j)yi
∥∥
ℓ1

⩽WH ∑
j∈[D]

Fi, j (W,γ,0) .
(25)

Similarly if |βi|< τi, then

∥∆i∥ℓ1
⩽WH ∑

j∈[D]

Fi, j (W,γ,β ) . (26)

Taking all together, the theorem is proved.
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2 Algorithm

In this section, we formalize the algorithm of our proposed pruning method. The definition
of the variables follows those in Section 3 and Section 4 in the main manuscripts. We further
denote all the learnable variables in the discriminator D as {Θ}, the training set as {(x,y)}
and the maximum number of iterations as T , then a brief description of our pruning algorithm
is summarized in Algorithm 1.

Algorithm 1: BIG pruning for GAN compression
Input: {(x,y)},T , λ1,λ2,ρ1,ρ2.
Output: {W[l]}, {γ[l]} and {β[l]}
Init: Initialization from pre-trained model
for 1 ⩽ t ⩽ T do

Update {W[l]} by SGD
Update {γ[l],β[l]} by Eqs. (28) and (29)
Update {Θ} by SGD

end for
return {W[l]}, {γ[l]} and {β[l]}

During the training, we update the weights of G and D alternately, where the update of
kernels in G is done by stochastic gradient descent (SGD). We assign the re-scalar parameters
IN to 0 (Eq. (28)) to prune their corresponded channels once they satisfy conditions defined
in Eq. (27). Otherwise, we update them by SGD (Eq. (29)). β ,γ are updated using the
gradient descent method which the derivation denotes the gradient from the overall loss to
the β ,γ parameters.

(i) β
(t−1)
[l],i ≤ − τ

(t−1)
[l],i ,

(ii) γ
(t−1)
[l],i = 0,

(iii)
∑ j∈[Dl ]

Fi, j

(
W(t−1)

[l] ,γ
(t−1)
[l] ,0

)
∑i∈[Cl ]

Pl,i

(
W(t−1)

[l] ,γ
(t−1)
[l] ,β

(t−1)
[l]

) < ρ1,

(iv)
∑ j∈[Dl ]

Fi, j

(
W(t−1)

[l] ,γ
(t−1)
[l] ,β

(t−1)
[l]

)
∑i∈[Cl ]

Pl,i

(
W(t−1)

[l] ,γ
(t−1)
[l] ,β

(t−1)
[l]

) < ρ2.

(27)

where ρ1,ρ2 > 0 denotes the hyper-parameters controlling the tolerance.

γ
(t)
[l],i = β

(t)
[l],i = 0 (28)

γ
(t)
[l],i = γ

(t−1)
[l],i −η

(t−1)
∇L(t−1)

all,γ ,

β
(t)
[l],i = β

(t−1)
[l],i −η

(t−1)
∇L(t−1)

all,β ,
(29)
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3 Detailed Experiments Configurations

3.1 The LGAN and Ldist

Recall the overall loss function represented in the main scripts:

Lall = LGAN +λ1Ldist +λ2LBIG, (30)

where LGAN and Ldist denote the ordinary GAN loss [2] and distillation loss [13] respectively.
Specifically, we denote G,D as the generator and discriminator in GANs, respectively.

Then the above two losses can be calculated as

Ldist = Ex∈Ψ[ddd(G(x),G0(x))], (31)
LGAN = Ey∈Ω[log(D(y))]+Ex∈Ψ[log(1−D(G(x)))], (32)

where G0 is the unpruned large model, ddd(((···,,, ···))) is perceptual loss[5]. The model distillation
loss is used to enforce the pruned generator G to mimic the behaviour of the original one [1,
4, 13]. We initialize the G,D with pre-trained G0,D0, respectively. Where D0 is the paired
pre-trained generator with G0.
Remark. We use the code provided by [13], which involves hybrid quantization [6, 14].
While the original code has the quantization term, we eliminate it and keep all the weights
to be 32-bit floats to focus on our main contributions.

3.2 Hyper-parameters
Optimizer. We use Adam to update {W,θ ,β} with lr = 1e− 8,betas = (0.5,0.999) and
SGD to update γ with momentum=0.5. We also use two groups of learning rates α(t) and
η(t) for updating {W,θ} and {γ,β} respectively. α(t) and η(t) are decayed using a cosine
annealing scheduler.
Loss weights and Threshold. The weight of Ldist is fixed at λ1 = 20 following [13]. We
adjust the weight of LBIG, i.e., λ2; and the thresholds for pruning channels, i.e., ρ1,ρ2. We
use 3 sets of these hyper-parameters denoted as Stage1,Stage2,Stage3. The details are
shown in Table 1.
Remark. Indeed, recent GAN compression methods, including the sota distillation base
methods, are much more sensitive to the initialization of weights rather than hyperparame-
ters. For instance, some hyperparameters that produce the best FID scores won’t converge
at the beginning of training for half of the time. Therefore, the choice of hyperparameters
follows the design of the method. For instance, we raise the ρ1,ρ2 once the current stage is
converged. Meanwhile, our method works for a border range of λ terms (several magnitudes
larger or smaller).

Table 1: Multi-stage trick

Stage # Chan. λ1 λ2(×10−5) ρ1(×10−3) ρ2(×10−2) lrate

1 2700 20 0.4 0.10 0.10 1e-6
2 2000 20 1.25 0.15 0.15 1e-5
3 650 20 1.25 1.25 1.25 1e-5
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4 Additional Experimental Results

4.1 Additional numerical results

We provide more numerical results on the generation tasks using the reverted zebra-to-horse
and winter-to-summer datasets. The improvement shown in Table 2 is consistent with
others in the main manuscripts.

Table 2: Additional results on zebra-to-horse and winter-to-summer datasets.

Model zebra-to-horse winter-to-summer

CycleGAN 148.8 73.3
GS32 151.8 74.7
Ours 140.1 73.1

4.2 Additional zero-shot model pruning

In this section, we conduct additional zero-shot model pruning experiments to examine
the correctness of our error model defined in Eq.(16). We use magnitude-based weight
pruning(MBWP)[7] and filter pruning via geometric median(FPGM)[3]. MBWP[7] mea-
sure the relative importance of a filter in each block by calculating the sum of its absolute
weights ∑i∈[C] ∑p,q∈[K] |W(i, j,g, p)|. FPGM calculates the Geometric Median (GM)[3] of
the filters within the same block. According to the characteristics of GM, the filter near it can
be represented by the remaining ones. The numerical results are shown in Table 3, and the
visual comparison results are collectively displayed in Figure 2. We can observe that these
former proposed methods prune filters with actually high impacts on the visual effects. The
correlativity (eff) of these methods to the sub-optimal solution (sub-net) is far low than the
0.9291 achieved by BIGP.

Figure 2: Examples of zero-shot pruning results on the horse2zebra dataset. The meth-
ods are annotated above the images, each row stands for a different sample.
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Table 3: Quantitative evaluation of zero-shot pruning results on the horse2zebra dataset.
The super-/sub-net are unpruned and reference small models from [8]. ↑ / ↓ means the
larger/smaller value, the better compression performance.

Method FLOPs Memory FID(↓) eff(↑)
super-net 4.59G 2.1MB 60.10 —
sub-net 2.35G 1.5MB 68.77 1.0
GS32[13] 2.35G 1.5MB 188.56 0.5333
MBWP[7] 2.35G 1.5MB 138.90 0.5625
FPGM[3] 2.35G 1.5MB 199.99 0.5208
BIGP (Ours) 2.35G 1.5MB 88.47 0.9291

4.3 Stability of Training Progress

In this section, we follow the story of the measure effectiveness, and demonstrate that the
instability happened during the training progress of the GS32 model. We first compare the
learning dynamics of both BIGP and GS32, then we choose the epoch when the GS32 col-
lapses to analyze its channel pruning selections.
Training Curve. We draw the epoch-channel and the epoch-FID curves in Figure 3 (a).
It can be seen that, in the GS32 model, the number of channels drops rapidly in the first
50 epochs during training. However, the FID score also degrades dramatically. The model
seems to have forgotten all the learned representations in the original model and begins to
learn the translation task a second time until the end of training. Yet the number of channels
barely decreases since the 50th epoch, and finally, the model converges to a near-stable
solution with an FID score of 91.46.

On the other hand, our proposed BIGP approach spends its first 120 epochs to obtain
a model that is sufficiently stable for pruning. Then in the second and third stages, with
increased LBIG weights and looser thresholds for pruning, it reaches the solution superior to
that obtained by the GS32 method in terms of both numbers of channels and FID scores.
The red dot lines in the figure mean the beginning of the next stage. In Figure 3 (b), we also
present the examples of generated images when 1) the GS32 collapse; 2) BIGP converges
in the stage2 (the best-balanced model); 3) two method has the same numbers of channels
left. Notably, our proposed BIGP can preserve most of the details existing in the original
unpruned model. In Figure 4, our pruned model generates samples that have similar stripes
to the one generated by CycleGAN. Meanwhile, the stripes generated by GS32 have a totally
different appearance.
Error Analysis of Channels. In order to fully understand the proposed BIGP measure and
the stability during model pruning progress, we select the epoch when the GS32 approach
begins to collapse and examine the channels that have been marked as important or unim-
portant mistakenly. We use the subscription to denote the number of the epoch. In the model
GS3240, there remain 1157 channels; among them, we find 33 channels satisfy the condition
in Eq. (27) and are ready to be pruned. We prune them in the zero-shot style and find barely
any change in the generated images (see columns 2 and 4 in Figure 3 (c)).

On the other hand, in GS3241, only 1071 channels survived. That means a total of 86
channels are pruned during the training of epoch 41. Among them, we select two extreme
cases to show the fallibility of the optimized ℓ1 norm measure. We present them in Table 4.
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(a) (b)

(c)
Figure 3: (a) Learning curves of FID score and the number of channels along with the epoch
of a complete pruning run. (b) The generated zebra images from the models are marked
as red dots in (a), and the methods and the model ids are annotated above the images. (c)
Examples of the generated images corresponding to the input image (column 1), the GS32
modelepoch collapse-recovery (columns 2,5,6) events, and pruning specified channels during
the collapse (columns 3,4).

It can be seen that
∣∣γ6,22

∣∣ > ∣∣γ6,101
∣∣, therefore the 6,101-channel is wrongly pruned, despite

of being significant in generating visual concepts (see column 3 and 5 in the Figure 3 (c)).

4.4 Additional error analysis of channels
This section provides two more runs of the GS32 approaches named GS32-13G and GS32-
bad, respectively. The GS32-13G run is the one we found with the best stability, while its
final number of channels is the highest among different runs. On the other hand, the GS32-
bad is a run that collapses badly during the training progress. The training progress is shown
in Figure 5. The GS32 is the run we presented in the main manuscript.

Here we also conduct additional error analysis of channels for the GS32-13G run. We
select epoch 26 when GS32-13G begins to collapse, shown seen in the top right of Figure 5.
Same as the main manuscript, we use the subscription to denote the number of epochs. The
model we analyze is denoted as GS32-13G26. Recall the definition of the BIG condition; if
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Figure 4: Examples of CycleGAN results on horse2zebra train set. The methods and
their FLOPs (in G) are annotated above the images. Each row shows a different sample.

a channel satisfies the conditions defined in Eq. (27), then we prune it.
We select2 the 23rd block of the model GS32-13G26 to analyze. There remain 34 chan-

nels; among them, we find the 11th channel satisfying the condition in Eq. (27) and are
ready to be pruned. On the other hand, in the 23rd block of GS32-13G27 only 31 channels
survived, where the 34th channel, the 39th channel, and the 59th channel are pruned during
the training of epoch 27.

We prune one of the 34 channels at a time in the zero-shot style. The results of the
corresponding outputs are shown in Figure 6. Barely any change can be seen in the generated
images by pruning the 11th channel (row 2, column 4 in Figure 6). On the other hand, we
can find a significant change in the generated images by pruning 34-channel or 39-channel
(row 4 column 6 and row 5 column 4 in Figure 6).

We also present the optimized ℓ1 norm measure and BIG for all the 34 channels in Ta-
ble 4. It can be clearly seen that the 11th channel satisfies the BIG condition; hence the
pruning is safe. Meanwhile, both the 34th channel and the 39th channel have large BIGP
measures; pruning them will result in significant changes in the output.

2arbitrarily
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Figure 5: Learning curves of FID score and the number of channels along the epoch of a
complete pruning run.
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Figure 6: From top-left to bottom-right: Input, the general image by GS32-13G26,the general
image by GS32-13G27, the general image with pruning i-channel by GS32-13G26. The i is
marked in the upper right corner of the image.
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Table 4: The comparison of channel importance measures. C stands for the C-th channel
from the 23-th block.

C |γ| [9]
BIGP

Measure
Satisfy

Eq. (27)? Influence

0 0.7387 1.5951 ✗ Trivial
2 0.8990 1.5462 ✗ Trivial
5 0.8400 1.1642 ✗ Trivial
7 1.1775 1.3383 ✗ Significant
9 1.0666 2.1659 ✗ Trivial
10 0.6048 0.8723 ✗ Trivial
11 0.5009 0.1940 ✓ Trivial
12 0.6439 0.8685 ✗ Trivial
14 0.7594 1.3825 ✗ Trivial
15 0.8615 1.3165 ✗ Trivial
17 0.6202 0.9134 ✗ Trivial
21 2.4474 2.5143 ✗ Significant
24 0.7317 1.0011 ✗ Trivial
25 1.2615 1.7249 ✗ Trivial
26 0.7066 1.4068 ✗ Trivial
28 1.4819 2.1917 ✗ Trivial
29 0.5792 1.0672 ✗ Trivial
30 0.8984 1.0914 ✗ Trivial
31 1.0790 2.0032 ✗ Trivial
33 1.1128 2.9770 ✗ Significant
34 1.2088 1.9504 ✗ Significant
35 1.9061 2.7983 ✗ Significant
36 0.4754 1.0369 ✗ Trivial
37 1.0808 1.8591 ✗ Trivial
39 0.4713 2.4302 ✗ Significant
42 1.3134 1.6557 ✗ Trivial
43 1.9453 3.4817 ✗ Trivial
45 0.5872 0.9523 ✗ Trivial
48 0.9820 1.9796 ✗ Trivial
53 0.7464 1.3464 ✗ Trivial
59 0.4580 0.8681 ✗ Trivial
60 0.8489 1.6040 ✗ Trivial
62 1.5269 3.0062 ✗ Significant
63 0.8970 1.2491 ✗ Trivial

Citation
Citation
{Luo, Wu, and Lin} 2017
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4.5 Additional qualitative results
We provide more visualization results of on-training weight pruning in Figure 7 and Figure 8,
results of zero-shot pruning state-of-the-art models in Figure 9 and Figure 10.

Figure 7: More examples of CycleGAN pruning results on horse2zebra test set. The
methods and their FLOPs (in G) are annotated above the images. Each row shows a different
sample.
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Figure 8: More examples of CycleGAN pruning results on summer2winter test set. The
methods and their FLOPs (in G) are annotated above the images. Each row shows a different
sample.
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Input OMGD
1.408G

+ZSP
1.406G

+LBIG
1.408G

+LBIG+ZSP
1.397G

Figure 9: More examples of zero-shot pruning OMGD [11] results on horse2zebra test
set. The methods and their FLOPs (in G) are annotated above the images. Each row shows a
different sample.

Citation
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{Ren, Wu, Xiao, and Yang} 2021
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Input OMGD
1.408G

+ZSP
1.404G

+LBIG
1.408G

+LBIG+ZSP
1.398G

Figure 10: More examples of zero-shot pruning OMGD [11] results on summer2winter
test set. The methods and their FLOPs (in G) are annotated above the images. Each row
shows a different sample.
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