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Abstract

Local feature matching is essential for many applications, such as localization and 3D
reconstruction. However, it is challenging to match feature points accurately in various
camera viewpoints and illumination conditions. In this paper, we propose a framework
that robustly extracts and describes salient local features regardless of changing light and
viewpoints. The framework suppresses illumination variations and encourages structural
information to ignore the noise from light and to focus on edges. We classify the el-
ements in the feature covariance matrix, an implicit feature map information, into two
components. Our model extracts feature points from salient regions leading to reduced
incorrect matches. In our experiments, the proposed method achieved higher accuracy
than the state-of-the-art methods in the public dataset, such as HPatches, Aachen Day-
Night, and ETH, which especially show highly variant viewpoints and illumination.

1 Introduction
Extracting and describing local features for matching is essential, especially in computer
vision tasks that involve image matching, searching, tracking, and 3D reconstruction [12, 24,
39]. Feature matching focuses on three main phases when given two similar images are to be
matched: feature detection, feature description, and feature matching [4, 20]. The primary
goal of feature matching is to optimize matching accuracy while minimizing the memory
footprint of earlier applications. The extracted features should be sparse, highly repeatable,
and precise. Each image’s salient features, such as its corners, are initially recognized as
interest points during the detection phase. Then, local descriptors are extracted based on the
neighborhood regions of these interest points and used in the matching algorithms.

Classical approaches [3, 20] concentrate on the detect-then-describe method, where they
first detect the points by analyzing the gradient of the image before describing the points with
directional information. Furthermore, these approaches [3, 20] have shifted research trends
by the emergence of deep learning methods [7, 40, 44]. Since deep convolutional neural
networks (DCNNs) can automatically learn features, mimic traditional detector behaviors,
and process complex images, CNN methods have achieved remarkable performance than

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Heinly, Schonberger, Dunn, and Frahm} 2015

Citation
Citation
{Noh, Araujo, Sim, Weyand, and Han} 2017

Citation
Citation
{Sv{ä}rm, Enqvist, Kahl, and Oskarsson} 2016

Citation
Citation
{Cheng, Leng, Wu, Cui, and Lu} 2014

Citation
Citation
{Lowe} 2004

Citation
Citation
{Bay, Tuytelaars, and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2006

Citation
Citation
{Lowe} 2004

Citation
Citation
{Bay, Tuytelaars, and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2006

Citation
Citation
{Lowe} 2004

Citation
Citation
{DeTone, Malisiewicz, and Rabinovich} 2018

Citation
Citation
{Tian, Fan, and Wu} 2017

Citation
Citation
{Zagoruyko and Komodakis} 2015



2 JUNG ET AL.: LOCAL FEATURE EXTRACTION FROM SALIENT REGIONS

before [22, 41, 42]. These data-driven methods concentrate on sparse points by leveraging
descriptors’ information for corresponding points. At the same time, several networks [7, 29]
attempted to achieve better performance by influencing detection and description simultane-
ously, with improved repeatability and sparsity of detected points. Detector-free local feature
matcher [38, 45] and a decoupled pipeline for a detection and description module were also
studied [16].

Despite these achievements, there is insufficient consideration for light and structure
information in an image. Examining this information to robustly locate and define matched
points, regardless of camera viewpoint or illumination variance, is critical. Nighttime images
are challenging due to the uncertainties of light and structure [38]. When viewpoints change
significantly, it is also difficult to match correctly [2]. Although some studies investigated
this viewpoint and light information to apply in the local feature domain, they used only
hand-crafted ways such as detecting corners or simply rotating features [19, 23, 27].

In this work, we propose a new strategy that uses both style and structure information
to address the issue of mismatches in image variance. Specifically, we apply the concept of
Instance Selective Whitening (ISW) loss, introduced by RobustNet [6], where the features
are transformed with implicit information about the style component to have robustness un-
der variations in light. Since there are limitations in this idea and considers only the style
factor, we revised ISW to consider the structure factor and apply it to the local feature field.
Furthermore, we focus on salient points to reduce matching time.
Contributions. In this paper, we propose a framework that addresses the problems from a
different light and structural information. We first extract features using Feature Map Gener-
ation (FMG) module. Then, Feature Map Transformation (FMT) module divides extracted
features into two components: style and structure matrix. Each component independently
learns the information gathered by the learned feature. Consequently, regardless of any
changes in any component, the feature map will still select salient and matchable points. We
introduce a loss function to maximize the influence of the structure information and mini-
mize the style information in the feature map. The main contributions are summarized as
follows:

• We overcome the limitation of feature matching in image variance by distinguishing
between structure- and style-dependent features and transforming the feature maps.

• We propose Feature Map Transformation (FMT) module, exploiting an existing style
transfer concept that concentrates only on style components, to transform the feature
map while training to make it focus on salient features.

• Extensive experiments on different benchmark datasets demonstrate that the proposed
method can achieve high accuracy in matching tasks in a short time and with fewer
parameters.

2 Related Work

Local feature learning. The joint learning of feature detectors and descriptors requires a
unified network to construct feature maps and allows the two tasks to share the majority
of computations for improved performance. DELF [24] proposed an image retrieval tech-
nique that learns local features as a by-product of a classification loss combined with an
attention mechanism to improve performance on large-scale images. It outperforms images
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under changing light conditions but has limitations in terms of structural variation. Super-
Point [7] suggested a method for learning from the manual annotation of significant points
on simple images such as corners and edges. However, because of their low repeatability and
descriptor accuracy, it has many outliers, so the matched points tend to be mistakenly judged.
R2D2 [29] has overcome this issue by learning the descriptor reliability in parallel with the
detection and description phases and only selecting both repeatable and reliable keypoints
with respect to the descriptor.

To find only the matchable points, D2-Net [8] proposed a describe-and-detect method
for joint detection and description that uses a single CNN with shared weights. The detec-
tion is based on the entire channel’s local maxima and the shape map’s spatial dimensions.
DISK [42] applied reinforcement learning on an end-to-end network inspired by D2-Net [8]
that relied on policy gradients. Furthermore, ASLFeat [22] demonstrated significant im-
provement using a score map that used local shape estimation to select matching points.
Feature covariance. Previous research [9, 10] proposed that image style information is
considered via feature correlations such as a gram or a covariance matrix. Since then, feature
correlation has been applied to several different research areas, including style transfer [17],
image-to-image translation [5], domain adaptation [30, 37], and network architecture [14,
21, 26]. Whitening transformation (WT) [5, 17, 26], which eliminates feature correlation
and assigns unit variance to each feature, aids in the removal of style information from the
feature representations.

Since region-specific styles and region-invariant content are simultaneously written to
the covariance vector of the feature maps, whitening all the correlation components reduce
feature identification and distort the boundaries of objects [17, 18]. RobustNet [6] proposed
the ISW loss, which extracted only the style information to solve the problem. We want to
focus on style and structure information, so we modify the ISW loss to satisfy our objective.

3 Method

3.1 Feature Map Generation Module

Feature Map Generation (FMG) module first extracts the features of an image pair, I1 and I2
independently, which outputs two branches: descriptors and point extraction feature maps.
The point extraction branch consists of two feature maps. One produces another with a 1×1
convolution layer; the former is a reliability map S and the latter in repeatability map R. The
covariance matrix derived from the descriptor map X is used to transform the feature map
to focus on saliency with style and structure information. Then FMG module uses feature
maps X, S, and R to calculate the loss functions for repeatability and reliability. The FMG
module’s network architecture differs from R2D2 [29] but uses the same loss functions in
this part. So only the architecture part will be described. The proposed method pipeline is
shown in Figure 1.

As introduced in MobileNet [13], depthwise separable convolution (DSC) is a factor-
ization convolution method that significantly reduces computation and model size with new
representations. Motivated by this, we used the DSC to focus on the salient area. Inspired by
[22, 29], we adopt a modified L2Net [40]—where the last layer is replaced by a set of three
consecutive layers—in our backbone network to extract feature information from an image
pair. Since the input images are image pairs, two backbone networks are needed. We use
weight sharing in the DSC layer when adding it behind the backbone network to reduce the
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Figure 1: Proposed framework. Network consisting of a feature map generation module
and a transformation module is shown. The reliability map S and repeatability map R learn
the regions of points of interest, while the covariance matrix derived from the descriptor
map X is used to transform the feature map to focus on saliency with style and structure
information.

model weight. Furthermore, the relationship between descriptors and points of interest can
be maintained by sharing the weights. The backbone network then generates three feature
maps, X by ℓ2 normalization, S by the element-wise square, and R obtained from S with a
1×1 convolution layer. In contrast to [29], S and R come from the same branch since they
depend on one another. We assumed that S is a feature map that learns a point that reduces
the matching distance, which might affect in high repeatability rate in R. Therefore, the
model weight gets lighter and develops more robust features through information sharing.

FMG module calculates the reliability loss, Lreli, to get discriminative feature points. Let
Xi j be the local descriptor in each pixel (i, j) of the image I1; we then predict the individual
reliability scores Si j from Xi j and X′

uv. Here, we specify the exact coordinate (u,v) that cor-
responds to (i, j), knowing the ground truth correspondence mapping T , where T ∈RH×W×2

is the ground truth correspondence between image I1 and I2. Xi j is compared with X′
uv, where

X′
uv is extracted from I2. Then, average precision is used to calculate Lreli, optimized with a

differentiable approximation [11, 29], using Si j.
In addition, FMG module calculates the repeatability loss, Lrepeat , for extracting repeat-

able feature points as in [29]. It uses peakiness prediction and similarity between feature
pairs from input pair images. For similarity, Let R and R′

be the repeatability maps cor-
responding to I1 and I2. We set R′

T to be a map in which R′
is transformed by the ground

truth homography relationship between image pairs I1 and I2. Because the prime objective
is to predict keypoints with high repeatability, we train the network so that the positions of
the local maxima in R are covariant to the actual picture transformations, such as viewpoint
structures or light shifts. Assuming that all the local maxima of R coincide with the local
maxima of R′

T , we define the loss function. The basic concept is to maximize the cosine
similarity between R and R′

T such that the two heatmaps are identical and their maxima
identically coincide. The loss may remain at a particular constant that may terminate the
learning process, so we prevent this using the peakiness prediction. The final repeatability
loss is calculated by considering both similarity and the peakiness of the input image pair.
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Figure 2: Transformed feature map. Comparison of feature maps from each network
indicates the tendency in which we change the feature map; eliminates style information
refers to noise, while structure complexity enlarges.

3.2 Feature Map Transformation Module

One problem with feature matching is structural perspective and lighting (style) differences.
The style corresponds to noise, such as weather and light. Concentrating on the structure,
which relates to the image’s point of view or the edges, can result in better results. Feature
Map Transformation (FMT) module suppresses the style information by performing task
adaptation and supplementing the existing WT loss with an extensive transformation. We
improve the previous loss by including structural information to overcome the limitations of
using only existing styles.
Style/Structure Covariance Matrix. Previous studies [6, 15] claimed that applying WT
to each instance of style transfer could successfully erase style information. WT is a linear
transformation that equalizes the variance term in each channel to one and reduces the co-
variances between channels to zero. The intermediate feature map is X ∈ RC×HW , where
C is the number of channels, and H and W are the height and width of the feature map,
respectively. The covariances between pairs of channels can be defined as follows:

Σ =
1

HW

(
X−µ ·O⊤

)(
X−µ ·O⊤

)⊤
∈ RC×C (1)

where O ∈ RHW is a column vector of ones, and the µ and Σ are the mean vector and
covariance matrix, respectively. When the loss function is designed so that the elements of
the covariance matrix Σ decrease, the feature extraction is less affected by the style element
in extracting features from the input image. This is because the feature map generation lacks
the information of style elements. Based on this concept, we adopt a method of transforming
feature maps using style elements. Furthermore, we use information about the structure, the
leftover elements in the gram matrix beside style elements, to design the loss function in the
direction of expansion rather than suppression.
Transformation Loss. In order to transform and manipulate feature maps using the afore-
mentioned style and structure information, we introduce the FMT module which use fea-
ture map X to calculate Lcov. This is done since the descriptor has the most information
among the three output feature maps from the FMG module. FMT module then separates
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style and structure characteristics from the feature representation’s higher-order statistics by
selectively modifying each attribute differently. Replacing the old feature map X with a
standardized feature map Xs simplifies the optimization process of both the diagonal and
off-diagonal elements of the covariance matrix simultaneously [6, 43]. Σs is a matrix made
from the standardized feature map Xs, and we define Σs as follows:

Σs =
1

HW
Xs ·X⊤

s ∈ RC×C (2)

After obtaining the covariance matrices Σs(I1) and Σs(I2), we calculate the difference be-
tween the two matrices to produce matrix ΣC, as defined in Eq. 3. Matrix ΣC indicates the
sensitivity of the corresponding covariance to the photometric transformation [6]. Elements
with a high variance value retain the style information, whereas elements with a low variance
value retain the structure information. We use absolute value notation with vertical bars.

ΣC = |Σs(I1)−Σs(I2)| (3)

We cluster the style and structural components in equal amounts, using the mean value to
determine the threshold for separating the two components. If a matrix ΣC element is greater
than the threshold, that element is classified as a style factor, while the rest of the elements are
classified as structural factors. This definition is established because the prominent factors of
the matrix ΣC are assumed to imply the style factor [6]. In this case, the style factor refers to
changes in light or color, and the structural factor refers to complexities with many objects,
edges, or viewpoints. The proposed loss function, Lcov is formulated as follows:

Lcov =

{
E
[∥∥ΣC ⊙Msty

∥∥
1

]
if ΣC > µ

1−E [∥ΣC ⊙Mstr∥1] otherwise
(4)

where E and M ∈RC×C are the arithmetic mean and a mask matrix. Msty and Mstr are masks
that select style and structure values, and ⊙ is element-wise multiplication. Finally, the total
loss function can be represented by Eq. 5, with each weight λi are empirically tuned to the
optimal ratio of 1:1:2. We define i ∈ {1,2,3} because the number of loss terms is three.
We strengthen the argument that adding the transformation loss is superior in selecting only
salient features when comparing the feature map of R2D2 [29] with ours in Figure 2.

Ltotal = λ1 ·Lreli +λ2 ·Lrepeat +λ3 ·Lcov (5)

This aggregated loss function is used to select salient points to minimize the prediction
of the less informative regions, such as the sky or ground. FMT is inducing the feature map
transformation so that the proposed transformation loss function could extract robust features
if the location where the image is taken is in the same place, regardless of the change in
structure and style.

4 Experiment

4.1 Implementation details
Training. We apply Adam to optimize the network for 25 epochs with a fixed learning
rate of 0.0001, a weight decay of 0.0005, and a batch size of 8 pairs of cropped images of
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Figure 3: Quantitative Results on HPatches. Com-
parison in terms of MMA on the HPatches dataset.

MMA@3
Overall Illumi. Viewp.

Hes.Aff. [28] 56.24 51.35 60.79
DELF(new) [24] 49.43 89.73 12.02
SuperPoint [7] 64.45 69.38 59.88

LF-Net [25] 53.01 57.31 49.02
D2-Net [8] 39.76 44.99 34.91
R2D2 [29] 70.06 75.56 64.96

ASLFeat [22] 72.28 75.47 68.28
DISK [42] 75.34 79.43 71.53

Ours 78.41 83.22 73.94

Table 1: MMA@3 on HPatches.
Comparison at 3px threshold.

192 by 192 pixels, as in R2D2 [29]. Our experiment used the training dataset and ground-
truth correspondences used in R2D2. Since our model uses the modified version of R2D2,
we trained the network from scratch. Nonetheless, we fixed the patch size N used in the
repeatability loss to 16 in all training parts to improve the performance of the transformation
loss.
Testing. We used the sum of different scales of images to diversify the resolution of the
feature maps at test time. The descriptors were interpolated at the modified locations. This
multi-scale feature extraction enables the extraction of more tentative keypoints and provides
improved localization.
Experiment Settings. This study used an NVIDIA GeForce RTX 3090 GPU and CUDA
toolkit, version 11.2, with Python 3 and PyTorch 1.8 in the training environment.

4.2 Feature Matching
Quantitative Evaluation. We evaluated the performance of selecting meaningful points by
calculating mean matching accuracy (MMA). If the distance between the converted point
and the reference point exists within the threshold based on the ground truth homography
metric, the converted point is classified as a correct conversion point. Figure 3 illustrates the
comparisons on the H-Patches dataset [2], with MMA measured at various error thresholds.
Figure 3 was drawn from the cache data provided by the D2-Net [8] repository. The com-
parison was performed with DELF [24], SuperPoint [7], LF-Net [25] mono and multi-scale
D2-Net [8], R2D2 [29], ASLFeat [22], DISK [42], and a hand-crafted Hessian affine detec-
tor with a RootSIFT descriptor [28]. Our network denoted as "Ours" outperformed almost
all state-of-the-art networks. Regarding illumination, DELF [24] outperformed our method
since it identifies key points in a low-resolution feature map with a fixed grid. However,
ours still exhibited the highest performance in terms of the five-pixel threshold because of
the fixed grid of keypoints without spatial variation in this subgroup. The overall scores for
the illumination dataset and viewpoints and their respective individual scores are presented
in Table 1, with the MMA threshold set to 3.
Qualitative Evaluation. Figure 4 shows the comparison between our baseline network
R2D2 [29] and the current state-of-the-art method DISK [42] with a severe change in il-
lumination and viewpoint in the first and second row, respectively. The experiment was done
with the nearest neighborhood matching with 3 points of error threshold. When we look at
the yellow box, we see that we succeeded in focusing on structural information. The struc-
turally less focused network failed to match in this part. In the red box, it can be seen that
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Figure 4: Qualitative Results on HPatches. There are illustrated pairs of illumination and
viewpoint variations. Green dots represent points that are correctly matched, whereas red
dots represent points that are incorrectly matched. The boxed area provides significantly
better outcomes than previous methods by focusing on the salient region.

the error rate is lowered by focusing less on the background or natural objects corresponding
to noise. The matching time is also shorter, shown in Figure 5.

4.3 Visual Localization

In a local reconstruction job [32], we evaluate our technique on the Aachen Day-Night
dataset v1.1 [33] as in D2-Net [8]. In this section, we present the results of an optical
localization task. Given the daytime photographs with known camera positions, our goal is
to identify the nighttime image of the same area. The known location of the daytime photos
in each set is used to triangulate the 3D structure of the scene after extensive feature match-
ing. Finally, these 3D models are used to locate the query photographs taken at night. We
followed the guidelines for Visual Localization Benchmark, for which we used our matches
as input for a pre-defined visual localization pipeline based on COLMAP [34, 35]. We also
adopted hierarchical localization [31] in every network for higher performance. This pipeline
was then used to build an SfM model with the registered test photos. We used NetVlad [1]
for the global feature and the nearest neighborhood for matching. The percentages of prop-
erly localized photos under three error levels are reported in Table 2. Our results demonstrate
our method’s strong generalization capabilities because of its high localization performance
compared with SuperPoint [7], D2-Net [8], R2D2 [29] and DISK [42]. Our network per-
formed fairly well when compared with matcher methods [38, 45].

4.4 3D Reconstruction

For 3D reconstruction evaluation, we used ETH-Microsoft Dataset [36] and for the evalua-
tion protocols, we ran SfM algorithm by COLMAP [34, 35]. In Table 3, we compare our
method with the results presented in [22], but only the jointly learned models. Compared
with other methods, since the number of matched points was less than 100K, we do not pro-
vide the comparison with R2D2 [29]. For sparse reconstruction, we report the number of
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Day Night
0.5m, 2◦ 1m, 5◦ 5m, 10◦ 0.5m, 2◦ 1m, 5◦ 5m, 10◦

SuperPoint [7] 85.3 91.9 94.5 58.6 74.3 85.9
D2-Net [8] 81.6 89.3 96.2 62.8 80.6 92.7
R2D2 [29] 89.9 95.4 98.4 69.6 85.9 96.3
DISK [42] - - - 72.3 86.4 97.9

Ours 90.4 96.1 98.9 72.3 89.0 96.9
LoFTR∗ [38] - - - 72.8 88.5 99.0

Patch2Pix∗ [45] 86.4 93.0 97.5 72.3 88.5 97.9

Table 2: Aachen Evaluation. Comparison on Aachen for the
visual localization task. * are marked for matcher methods.

Figure 5: Matching Time.
Comparison of matching time.

Madrid Metropolis 1344 images Gendarmenmarkt 1463 images Tower of London 1576 images
# Reg # Sparse Track Reproj # Reg # Sparse Track Reproj # Reg # Sparse Track Reproj

SuperPoint [7] 438 29K 9.03 1.02px 967 93K 7.22 1.03px 681 52K 8.67 0.96px
D2-Net [8] 495 144K 6.39 1.35px 965 310K 5.55 1.28px 708 287K 5.20 1.34px

ASLFeat [22] 649 129K 9.56 0.95px 1061 320K 8.98 1.05px 846 252K 13.16 0.95px
Ours 766 142K 8.13 1.19px 1316 516K 6.81 1.19px 1186 315K 8.63 1.21px

Table 3: ETH Evaluation. 3D reconstruction held with ETH-Microsoft Dataset.

registered images (# Reg), the number of sparse points (# Sparse), tracked length (Track),
and reprojection error (Reproj). Table 3 data shows that our network performs favorably
against previous methods on the 3D reconstruction task. Furthermore, the number of regis-
tered images obtained the best value, and the number of sparse points also had the best or
second-order value. It can be interpreted that the selection of salient points was made well.

4.5 Ablation Studies
We validated the significance of the components that comprise our suggested transformation
loss function by performing two ablation studies. We studied the presence of style and
structural component losses to determine how each characteristic contributes to learning.
Lsty and Lstr denote loss function that use same subscript in the masks of Eq. 4. The result in
Table 4 reveals that the matching accuracy is not only influenced by the style factor but also
by the structure factor. This experiment confirms the efficiency of ISW when applied to our
method and its ability to provide additional information about the structure. Furthermore,
ablation studies were conducted with and without DSC layer. The performance improved
using DSC layer, with a model weight reduction of 2 MB.

5 Conclusion
We proposed a robust network using self-transformation loss, which transforms a feature
map that contributes to the repeatability of local features. We separated structure and style
characteristics by clustering the covariance vector and influenced the feature of each char-
acteristic. The feature maps were unified to make two feature maps closer by reducing the
light component and sharpening the structure component. Consequently, this step increases
the repeatability of the points, reduces outliers, and assigns robustly matched descriptors. A
comparison with similar research reveals that our method more effectively extracts robust
matching points in various scenes. Nevertheless, the current work has limitations. Points
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HPatches Aachen (Day) Aachen (Night)
Overall Illum Viewp 0.5m, 2◦ 1m, 5◦ 5m, 10◦ 0.5m, 2◦ 1m, 5◦ 5m, 10◦

w/o Lsty&Lstr 70.06 75.56 64.96 89.9 95.4 98.4 69.6 85.9 96.3
w/o Lsty 72.08 78.04 66.55 89.8 96.1 98.7 73.3 88.5 95.3
w/o Lstr 76.53 81.43 71.99 89.7 95.8 98.5 69.6 84.8 96.3
w/o DSC 76.89 81.95 72.19 89.9 95.3 98.2 69.1 85.9 93.7

w/ All 78.41 83.22 73.94 90.4 96.1 98.9 72.3 89.0 96.9

Table 4: Ablation Studies. Ablation experiment on MMA@3 and visual localization to see
how each component affect transformation loss. We show that the best results occur when
style and structure loss are included with depth-wise convolution.

tend to be retrieved by clustering them in a particular region. This analysis reveals that
adaptively selecting from sparse points is a promising avenue for future research.
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