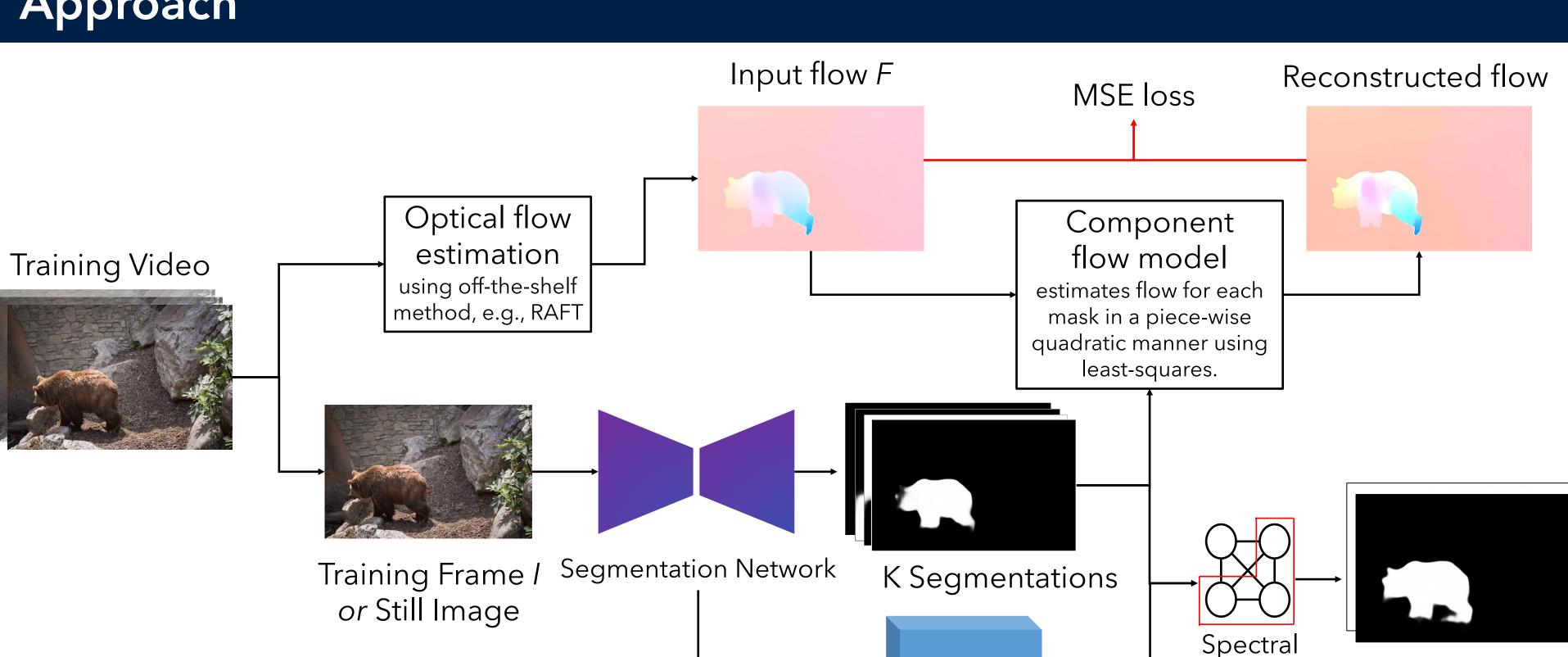


Guess What Moves:


Unsupervised Video and Image Segmentation by Anticipating Motion

UNIVERSITY OF OXFORD Subhabrata Choudhury*, Laurynas Karazija*, Iro Laina, Andrea Vedaldi, Christian Rupprecht Visual Geometry Group, University of Oxford

Motivation

- Motion and more broadly the principle of common fate is a useful cue for detecting objects. Motion helps to focus on the parts that might be of interest.
- Some recent unsupervised video segmentation methods propose using only the motion, as captured by optical flow, arguing that it provides sufficient information and is easier to model.
- But appearance information can provide complementary information to motion cues.
- It can help detect salient objects in absence of motion, in extreme case, detection in still images.
- We instead take a moderate view and re-emphasize the importance of using both appearance and motion modality.

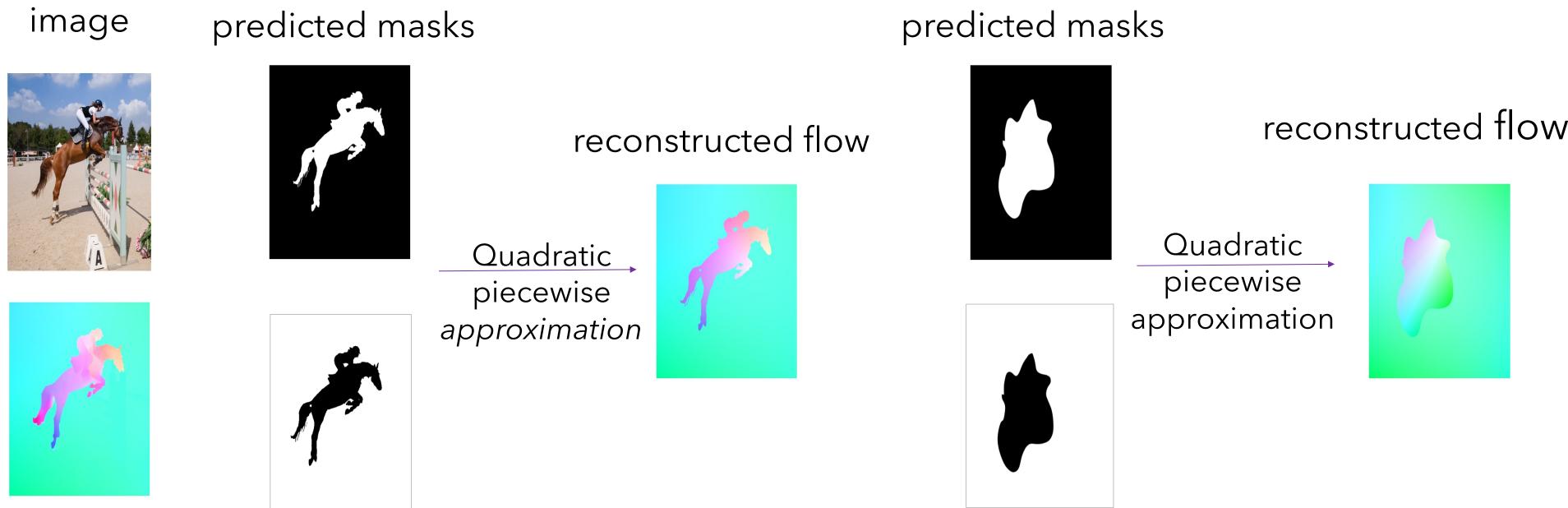
Approach

Final

Prediction

This enables us to also perform unsupervised image segmentation

Contribution


- We propose a new self-supervised approach that encourages the model to learn a salient object detector from motion cues
- In addition to video object segmentation we can also perform image segmentation using the same model without additional training
- We propose a single network that can be trained endto-end
- Our method that does not need motion input during inference but can optionally use it. If motion present we use the full model and train on the frame and flow sets. If motion input is not available we directly use the segmentation network to predict segments
- There it can be applied to videos and still images alike.
 We test our method on unsupervised video and image

Key Idea

For the flow patterns to be explained well by our simple quadratic model, the masks should roughly correspond to the independent objects

Appearance Features

If the pixels that move together are not grouped together, the component flow model cannot not reconstruct the motion of the scene well

segmentation benchmarks and achieve comparable results to state-of-the-art methods

input flow

Case 1: Masks match independent objects

Case 2: Masks do not match independent objects

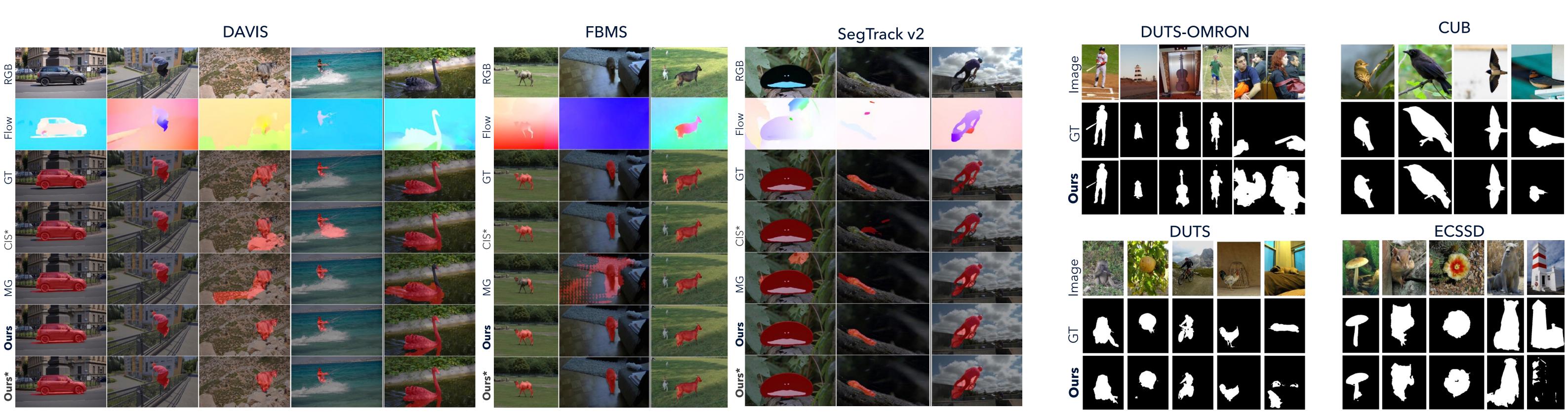
Clustering

Results

- Segmentation model: MaskFormer with frozen DINO backbone
 Number of segments (K) = 4
- Optical flow method: RAFT

Unsupervised Video Segmentation:

- Datasets: DAVIS, SegTrack v2, FBMS
- Evaluation Metric: Jaccard Index (J)
- Run Mode: Full model


Flow Component model: F _u	~	A _u + b
$\blacksquare u = [x, x^2, v, v^2, xv]$	E	R ⁵ includes guadratic and mixe

 $u = [x, x^2, y, y^2, xy] \in \mathbb{R}^5$ includes quadratic and mixed terms of the pixel coordinates

Unsupervised Image Segmentation:

- Datasets: CUB, DUTS, ECSSD, DUT-OMRON
- Evaluation Metric: Accuracy (Acc), Jaccard Index (J), F-score
- Run Mode: Only the trained segmentation network is used

Method	Inf. RGB	Input Flow	Input Resolution	Flow Method	DAVIS J ↑	STv2 J ↑	FBMS J ↑			CUB			DUTS			ECSSD			OMRON		
									Acc	J↑	maxFβ ↑	Acc	J↑	Fβ ↑	Acc	J↑	Fβ ↑	Acc	J↑	Fβ ↑	
AMD	\checkmark	Х	128 × 224	_	57.8	57	47.5	Voynov et al.	94.0	71.0	80.7	88.1	51.1	60.0	90.6	68.4	79.0	86.0	46.4	53.3	
MG	Х	\checkmark	128 × 224	RAFT	68.3	58.6	53.1	-													
EM	Х	\checkmark	128 × 224	RAFT	69.3	55.5	57.8	AMD						60.2							
OCLR	\checkmark	\checkmark	480 × 832	RAFT	78.9	71.6	68.7	Kyriazi et al.	92.1	66.4	78.3	89.3	52.8	61.4	91.5	71.3	80.6	88.3	50.9	58.3	
DS*	\checkmark	\checkmark	240 × 426	RAFT	79.1	72.1	71.8	Kyriazi et al.		76.9			51.4			73.3			56.7		
Ours (UNet)	\checkmark	Х	128 × 224	RAFT	78.3	76.8	72										88.1			73.9	
Ours (Maskformer)	\checkmark	Х	128 × 224	RAFT	79.5	78.3	77.4	DyStaB*													
CIS*	\checkmark	\checkmark	192 × 384	PWCNet	71.5	62	63.5	TokenCut				90.3	57.6		91.8	71.2		88	53.3		
DyStaB*	\checkmark	\checkmark	192 × 384	RAFT	80.0	74.2	73.2	SelfMask				92.3	62.6		94.4	78.1		90.1	58.2		
Ours* (w/ CRF)	\checkmark	Х	128 × 224	RAFT	80.7	78.9	78.4	Ours	93 5	64.6	80.9	91 5	49.2	65.6	88 5	56 1	74 3	893	41 31	563	

