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Supplementary Material
In this supplementary material, we provide further details on our training parameters in Ap-
pendix A. Appendix B contains the closed form solution of the fitting of the flow model
θ . Expanded experiments and ablations are found in Appendix C. Finally, more qualitative
results are presented in Appendix D. See the project page, https://www.robots.ox.
ac.uk/~vgg/research/gwm, for additional visualizations, code and models.

A Experimental Setup
Network. We use MaskFormer [5] as our segmentation network1, and use only the seg-
mentation head. As MaskFormer predicts masks at 4 times lower resolution than input, we
modify the PixelDecoder by appending [Conv(3), UpsampleNN(2), Conv(1)]×2 to its
output layers to bring the masks back up to the input resolution.

For the backbone and appearance features V , we leverage a ViT-8 transformer, pre-
trained on ImageNet [15] in a self-supervised manner using DINO [3] to avoid any external
sources of supervision. For the hierarchical backbone features to decoder we use the key
feature outputs from layers 6, 8, 10, 12.

The input RGB images are interpolated (bi-cubic) to 128×224 resolution for input to the
network. We interpolate (nearest neighbor) the optical flow to 480×854 for the loss. Output
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segmentation logits are up-sampled using bi-linear interpolation to the flow resolution for
training and again to annotation resolution for evaluation.

Training Hyperparameters. The networks are optimised using AdamW [11], with learn-
ing rate of 1.5×10−4, a schedule of linear warm-up from 1.0×10−6 to 1.5×10−4 over 1.5k
iteration and polynomial decay afterwards. We use batch size of 8 and train for 15k itera-
tions. We additionally employ gradient clipping when the 2-norm exceeds 0.01 for stability.
The loss multiplier is 0.03.

UNet. For experiments using U-Net2, we use the standard 4-layer version. The batch-size
is increased to 16 and learning rate to 7.0× 10−4. We also clip the gradients only when
2-norm exceeds 5.0. All other settings, including optimizer and learning rate schedules, are
kept the same. U-Net is not pre-trained and trained from scratch.

Optical Flow. Our method derives its learning signal from optical flow estimated using
off-the-shelf frozen networks. We estimate optical flow for all frames on DAVIS, STv2,
and FBMS following the practice of MotionGrouping [22]. We employ RAFT [18] (super-
vised) using the original resolution for our main experiments, and gaps between frames of
{−2,−1,1,2} for DAVIS and STv2, and {−6,−3,3,6} on FBMS. When multiple flows are
associated with a single frame (multiple gaps), we sample one at random for each iteration.

B Quadratic Flow Model: Closed Form Solution
Consider one of K regions m and define wu ∝ P(mu = k|I,Φ) the posterior probability for that
region, normalized so that ∑u∈Ω wu = 1 (the scaling factor does not matter for the purpose of
finding the minimizer). We can obtain the minimizer (A∗,b∗) and minimum of the energy

E(A,b) = ∑
u∈Ω

wu∥Fu −Au−b∥2 (1)

as follows. Defining

ū :=
[

u
1

]
, M :=

[
A b

]
∈ R2×6

allows rewriting the energy as

E(M) = ∑
u∈Ω

wu∥Fu −Mū∥2 = tr
(

ΛFF −MΛ
Ω̄F −ΛFΩ̄

M⊤+MΛ
Ω̄Ω̄

M⊤
)
,

where

ΛFF = ∑
u∈Ω

wuFuF⊤
u , ΛFΩ̄

= ∑
u∈Ω

wuFuū⊤, Λ
Ω̄F = Λ

⊤
FΩ̄

, Λ
Ω̄Ω̄

= ∑
u∈Ω

wuūū⊤.

are the (uncentered) second moment matrices of the flow Fu and homogeneous coordinate
vectors ū. By inspection of the trace term, the gradient of the energy is given by:

dE(M)

dM
= 2(ΛFΩ̄

−MΛ
Ω̄Ω̄

)

Hence, the optimal regression matrix M∗ and corresponding energy value are

M∗ = ΛFΩ̄
Λ
−1
Ω̄Ω̄

, E(M∗) = tr(ΛFF −M∗
ΛΩF̄) .

2Implementation from https://github.com/milesial/Pytorch-UNet.
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Somewhat more intuitive results can be obtained by centering the moments and resolving
for A and b instead of M. Specifically, define:

µΩ := ∑
u∈Ω

wuu, µF := ∑
u∈Ω

wuFu.

The covariance matrices of the vectors are:

ΣFF = ∑
u∈Ω

wu(Fu −µF)(Fu −µF)
⊤, ΣFΩ = ∑

u∈Ω

wu(Fu −µF)(u−µΩ)
⊤,

ΣΩF = Λ
⊤
FΩ, ΣΩΩ = ∑

u∈Ω

wu(u−µΩ)(u−µΩ)
⊤.

It is easy to check that

ΛFF = ΣFF +µF µ
⊤
F , ΛFΩ̄

=
[
ΣFΩ +µF µ⊤

Ω
µF

]
, Λ

Ω̄Ω̄
=

[
ΣΩΩ +µΩµ⊤

Ω
µΩ

µ⊤
Ω

1

]
.

From this:

M∗ = ΛFΩ̄
Λ
−1
Ω̄Ω̄

=
[
ΣFΩ +µF µ⊤

Ω
µF

][ΣΩΩ +µΩµ⊤
Ω

µΩ

µ⊤
Ω

1

]−1

=
[
ΣFΩ +µF µ⊤

Ω
µF

][ Σ
−1
ΩΩ

−Σ
−1
ΩΩ

µΩ

−µ⊤
Ω

Σ
−1
ΩΩ

1+µ⊤
Ω

Σ
−1
ΩΩ

µΩ

]
=
[
ΣFΩΣ

−1
ΩΩ

µF −ΣFΩΣ
−1
ΩΩ

µΩ

]
=
[
A∗ b∗

]
.

Hence, the optimal regression coefficients and energy value are also given by:

A∗ = ΣFΩΣ
−1
ΩΩ

, b∗ = µF −A∗
µΩ.

C Further Experiments

C.1 Generalization in Unsupervised Video Segmentation

We also test our model in a video generalization setting. In contrast to the protocol of [22,
23], where evaluation set is observed together with training to infer masks jointly3, here we
train only on frames from the training set. We report performance on unseen videos. In this
case, our method independently segments a collection of frames from a new video, with no
way to incorporate motion information.

To “observe” motion on unseen inputs, we also report results after taking 20 test-time
adaptation steps (using our unsupervised loss) for each evaluation sequence in isolation (c.f.
AMD [10] takes 100 test-time adaptations steps). That is after training, we follow our train-
ing setup (optimizer, rate, batch size) and feed frames from the evaluation video and corre-
sponding optical flow, calculate loss and take gradient steps. Despite other methods using
much larger training sets, our approach shows better performance (Table 1).
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Model Flow DAVIS (J ↑) FBMS (J ↑)

[10] AMD (100 steps) ✗ 57.8 47.5
Ours (Zero shot) ARFlow 62.5 65.4
Ours (20 steps) ARFlow 65.2 67.6

[14] EM RAFT 69.3 57.8
Ours (Zero shot) RAFT 66.8 73.2
Ours (20 steps) RAFT 76.3 77.1

Table 1: Generalization performance on unseen videos. Few unsupervised methods oper-
ate in this setting. AMD trains on YT-VOS, followed by 100 test-time adaptation steps, while
EM trains on FlyingThings3D using flow as input. We use (fully unsupervised) ARFlow for
fair comparison with AMD. Our method shows better performance after observing motion.
(Test-time adaptation uses the training loss. No GT is involved at any point.)

Backbone Backbone DAVIS STv2 FBMS
model pretraining Sup. J ↑ J ↑ J ↑

ViT-8 ImageNet DINO ✗ 79.5 78.3 77.4
UNet None ✗ 78.3 76.8 72.0

SWIN-tiny ImageNet MOBY ✗ 78.3 77.4 74.6
SWIN-tiny ImageNet CLS ✓ 78.9 77.7 75.5
SWIN-tiny None ✗ 78.3 75.2 68.8
Resnet-50 ImageNet CLS ✓ 77.5 75.8 72.9

Table 2: Effect of Pretraining/Backbone. Our method with MaskFormer benefits from pre-
training, with slight improvement offered by supervised (CLS) over unsupervised (MOBY)
pretraining (usng SWIN transformer). Comparable results can be obtained with training
from scratch. Best results are obtained using DINO features.

C.2 Ablation Studies
Pretraining. Compared to recent methods for video segmentation [14, 22], one of the ben-
efits of our formulation is that we can leverage unsupervised pretraining for the segmentation
network (e.g., for the ViT backbone of MarkFormer). This enables our method to be trained
in only 15k iterations. Here, we investigate the importance of the backbone. To this end
we replace ViT with Swin-tiny pretrained using MOBY (self-supervised) in Table 2. The
performance differences are small.

Additionally, we investigate the effect of other pretraining strategies on the performance.
Switching to a model pretrained on ImageNet with image-level supervision (i.e. a classi-
fication task) only slightly improves performance showing that the method does not need
to rely on supervised pre-training. Finally, we train the model using same settings for 20k
iterations from scratch, without any pre-training. This results in comparable performance
on DAVIS but reduced performance on the smaller datasets. Comparing backbones without
pre-training, UNet gives better results than SWIN-tiny, likely due to smaller networks being
easier to train on small datasets.

Feature Clustering without Motion. To demonstrate the potential of using motion for
discovering objects, in Table 3, we compare to additional baselines that only rely on cluster-
ing visual features. Spectral feature clustering with K = 2 (based on [12]), on the same visual

3Note, no annotations are observed at any point.

Citation
Citation
{Liu, Wu, Yu, and Lin} 2021

Citation
Citation
{Meunier, Badoual, and Bouthemy} 2022

Citation
Citation
{Meunier, Badoual, and Bouthemy} 2022

Citation
Citation
{Yang, Lamdouar, Lu, Zisserman, and Xie} 2021{}

Citation
Citation
{Melas-Kyriazi, Rupprecht, Laina, and Vedaldi} 2022{}



CHOUDHURY∗, KARAZIJA∗, LAINA, VEDALDI, RUPPRECHT: GUESS WHAT MOVES 5

DAVIS STv2 FBMS
Model K Merge J ↑ J ↑ J ↑

Ours K = 4 ✓ 79.5 78.3 77.4

Spectral clustering K = 2 ✗ 15.79 14.89 27.45

K-Means K = 4 ✓ 41.79 34.84 48.80
K-Means K = 2 ✗ 20.24 21.14 38.25

Table 3: Feature Clustering without Motion. We experiment with offline clustering of
DINO features to assess the importance of our motion-based formulation. Simply clustering
DINO features using K-Means or spectral clustering [12] into 2 clusters performs worse.
Over-clustering and merging using our cluster-merging approach performs better but still
fails to reach our performance.

Opt. Flow Sup. DAVIS (J ↑)

[9] ARFlow ✗ 66.9
[17] PWCNet ✓ 74.9
[18] RAFT ✓ 79.5

Table 4: Choice of Optical Flow Method.
Measuring the influence of the method to ex-
tract optical flow.

Method DAVIS (J ↑)

[22] MG 53.2
[10] AMD 57.8

Ours 66.9

Table 5: Fully Unsupervised Video Ob-
ject Segmentation. Comparison to the state
of the art in unsupervised VOS without re-
liance on any supervision

features we use to merge segments (i.e., DINO) after over-clustering, shows (somewhat un-
surprisingly) that learning from motion is important for motion segmentation. Similarly,
K-means (K = 2) on the same features also falls behind our method. Yet, we show that
K-means also benefits from over-clustering (K = 4) and then merging.

Flow Estimation. Finally, our method relies on optical flow estimated by frozen, off-the-
shelf networks. So far we have been using RAFT [18], as such optical flow network was
adopted in our baselines. In Table 4, we also consider PWCNet [17] and fully-unsupervised
ARFlow [9]. We observe that the performance of the flow estimator has an impact on the
final performance of our method. Finally, we compare our fully unsupervised model (which
uses self-supervised pretraining and flow) to fully unsupervised state-of-the-art methods.
Appearance-Motion Decomposition (AMD) [10] works end-to-end and directly extracts mo-
tion features from pairs of images with a PWCNet-like architecture, while MotionGrouping
(MG) [22] and our method use ARFlow [9] for optical flow estimation. In Table 5 we show
that our method achieves a significant improvement over previous approaches.

D Additional Results and Discussion
We provide a further breakdown of our results in Tables 7 to 9, reporting per sequence
evaluation results on the video segmentation tasks.

Video object segmentation and egomotion. We note that some sequences have pronounced
egomotion (e.g., camera shaking in libby of DAVIS or inside a moving car in camel01
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CUB DUTS ECSSD OMRON

Acc J ↑ maxFβ ↑ Acc J ↑ Fβ ↑ Acc J ↑ Fβ ↑ Acc J ↑ Fβ ↑

[21] WNet† – 24.8 – – – – – – – – – –
[7] IIC-seg – 36.5 – – – – – – – – – –
[2] PertGAN – 38.0 – – – – – – – – – –
[4] ReDO 84.5 42.6 – – – – – – – – – –
[8] UISB – 44.2 – – – – – – – – – –
[1] OneGAN – 55.5 – – – – – – – – – –

[25] DRC – 56.4 – – – – – – – – – –
[6] GANSeg – 62.9 – – – – – – – – – –

[19] Voynov et al. 94.0 71.0 80.7 88.1 51.1 60.0 90.6 68.4 79.0 86.0 46.4 53.3
[10] AMD – – – – – 60.2 – – – – – –
[13] Kyriazi et al. 92.1 66.4 78.3 89.3 52.8 61.4 91.5 71.3 80.6 88.3 50.9 58.3
[12] Kyriazi et al. – 76.9 – – 51.4 – – 73.3 – 56.7 –
[24] DyStaB† – – – – – – – – 88.1 – – 73.9
[20] TokenCut – – – 90.3 57.6 – 91.8 71.2 – 88.0 53.3 –
[16] SelfMask – – – 92.3 62.6 – 94.4 78.1 – 90.1 58.2 –

Ours 93.5 64.6 80.9 91.5 49.2 65.6 88.5 56.1 74.3 89.3 41.31 56.3

Table 6: Expanded unsupervised object segmentation benchmark CUB and three saliency
detection benchmarks: DUTS, ECSSD, and DUT-OMRON (OMRON). † DyStaB uses CRF
post-processing, supervised pre-training, and self-training on each dataset.

of FBMS). Our model performs well on these sequences, demonstrating that it can handle
egomotion. When only the camera is moving, the resulting optical flow would still highlight
objects due to parallax. This provides a learning signal, however, it would likely be weaker
for objects farther away from the camera. As our method works on a per-frame basis and
does not require flow during inference, this should not have an impact at test time. However,
fine-tuning on scenes with only egomotion (see Appendix C.1 for experiments investigating
test-time adaptation) and only small or far away objects, might lead to the model learning to
ignore them.

Image segmentation. For unsupervised image segmentation, we show some additional
qualitative results for CUB in Fig. 1, DUT-OMRON in Fig. 2, DUTS in Fig. 3, and ECSSD
in Fig. 4. Our model, trained on a combined dataset of DAVIS, FBMS and STv2, is robust
enough to handle a wide array of classes from the above datasets in varying context. Our
model can segment both stationary and non-stationary objects and works well when multiple
objects are in the foreground. In Fig. 5, we show a few failure cases for all datasets, where the
model struggles mostly with ambiguous foreground objects and, in particular, with close-ups
of stationary objects, e.g. signs (ECSSD) and buildings (DUT-OMRON). The model also has
issues with boundaries for many objects, i.e. the foreground objects are correctly identified
but the model fails to fully segment them. For example, in DUTS, the snake in the first image
has a well segmented head, however, the model does not segment its body accurately.
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w/o CRF w/ CRF
Sequence J (M) J (R) J (D) J (M) J (R) J (D)

blackswan 67.0 100.0 -0.8 67.4 100.0 1.1
bmx-trees 58.2 76.9 19.9 59.8 76.9 17.5

breakdance 86.2 100.0 4.9 87.4 100.0 5.2
camel 89.4 100.0 5.7 90.6 100.0 5.5

car-roundabout 81.4 90.4 26.7 81.2 90.4 25.8
car-shadow 84.3 100.0 9.0 83.9 100.0 8.0

cows 90.4 100.0 3.4 91.3 100.0 3.2
dance-twirl 87.4 100.0 -7.1 88.8 100.0 -6.2

dog 92.9 100.0 -1.7 93.9 100.0 -1.6
drift-chicane 78.6 98.0 2.2 82.0 100.0 2.6
drift-straight 80.6 100.0 7.2 82.1 100.0 8.2

goat 78.6 100.0 1.7 75.8 100.0 4.5
horsejump-high 84.9 100.0 6.4 88.0 100.0 4.6

kite-surf 64.4 97.9 4.5 67.5 97.9 3.1
libby 82.9 100.0 8.6 84.5 100.0 8.6

motocross-jump 74.1 78.9 4.1 75.1 81.6 4.1
paragliding-launch 62.2 65.4 33.5 64.1 66.7 35.8

parkour 86.1 100.0 -4.5 88.1 100.0 -3.1
scooter-black 82.1 97.6 -4.3 82.1 100.0 -4.3

soapbox 79.2 100.0 -2.8 81.0 100.0 -0.4

Average 79.5 95.3 5.8 80.7 95.7 6.1

Table 7: Result breakdown on DAVIS16 validation sequences. (M), (R), and (D) are
mean, recall and decay of IoU, respectively
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w/o CRF w/ CRF
Sequence J (M) J (M)

drift 86.1 86.5
birdfall 67.8 57.1

girl 84.5 86.3
cheetah 57.0 50.8
worm 83.7 84.0

parachute 90.6 93.2
monkeydog 22.9 22.6

hummingbird 57.3 57.2
soldier 77.4 77.4
bmx 76.4 77.5
frog 84.1 86.7

penguin 77.7 76.8
monkey 75.0 75.8

bird of paradise 92.3 94.0

Seq. Avg. 73.8 73.3
Frame Avg. 78.3 78.9

Table 8: Sequence breakdown on Seg-
Trackv2 dataset.

w/o CRF w/ CRF
Sequence J (M) J (M)

camel01 86.8 91.0
cars1 86.9 86.8

cars10 64.6 64.8
cars4 81.5 82.4
cars5 81.6 82.1
cats01 87.7 89.5
cats03 69.4 63.2
cats06 66.5 67.4
dogs01 76.3 75.6
dogs02 85.3 86.4
farm01 90.8 90.5

giraffes01 82.1 83.9
goats01 79.9 83.7
horses02 80.4 83.6
horses04 59.8 60.5
horses05 72.8 74.5
lion01 75.1 75.0

marple12 81.9 81.6
marple2 84.4 85.9
marple4 81.1 82.4
marple6 95.1 95.1
marple7 76.6 77.6
marple9 95.4 96.3
people03 90.1 91.0
people1 85.3 87.2
people2 88.1 89.7

rabbits02 91.2 91.2
rabbits03 81.5 84.4
rabbits04 43.8 44.1

tennis 73.3 74.2

Seq. Avg. 79.8 80.7
Frame Avg. 77.4 78.4

Table 9: Sequence breakdown on FBMS59
dataset
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Figure 1: Qualitative Comparison on CUB. We train our model on a combined dataset of
DAVIS, FBMS and STv2. Our method can extract birds in different environments and poses.
Our model can segment different species of birds
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Figure 2: Qualitative Comparison on DUT-OMRON. We train our model on a combined
dataset of DAVIS, FBMS and STv2. Our model can segment both stationary and non-
stationary objects and is robust enough to work on a wide range of classes
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Figure 3: Qualitative Comparison on DUTS. We train our model on a combined dataset
of DAVIS, FBMS and STv2. We can segment a wide array of classes. Our model performs
well on scenes where multiple objects are in the foreground
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Figure 4: Qualitative Comparison on ECSSD. We train our model on a combined dataset of
DAVIS, FBMS and STv2. Our model can segment objects from different classes in complex
poses
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ECSSD

DUTS

CUB

DUT-OMRON

Figure 5: Qualitative Comparison of Failure Cases. We train our model on a combined
dataset of DAVIS, FBMS and STv2. Our method can extract salient object in various envi-
ronments. The model has difficulty where the foreground object is ambiguous — when there
are multiple prominent objects but only few are annotated as salient object. The model also
has issues with predicting the object boundaries well for some instances
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