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Abstract
Scene text recognition (STR) enables computers to recognize and read the text in var-

ious real-world scenes. Recent STR models benefit from taking linguistic information in
addition to visual cues into consideration. We propose a novel Masked Vision-Language
Transformers (MVLT) to capture both the explicit and the implicit linguistic information.
Our encoder is a Vision Transformer, and our decoder is a multi-modal Transformer.
MVLT is trained in two stages: in the first stage, we design a STR-tailored pretraining
method based on a masking strategy; in the second stage, we fine-tune our model and
adopt an iterative correction method to improve the performance. MVLT attains superior
results compared to state-of-the-art STR models on several benchmarks. Our code and
model are available at https://github.com/onealwj/MVLT.

1 Introduction
Scene text recognition (STR) aims to read text from natural scenes, which is helpful in many
practical artificial intelligence applications such as autonomous driving, instant translation,
and natural scene understanding. STR has been studied extensively in the past two decades,
however, the performance of which still struggles under scenarios with unpromising illumi-
nations, occluded characters, complex deformations, etc. Recent studies [7, 8, 16, 17, 35,
39, 42] have made progress in dealing with such challenges by introducing textual seman-
tics information except for visual cues. These language-aware methods are typically divided
into two kinds: explicitly building an extra language model or implicitly extracting textual
semantics from visual cues. The former [8, 16, 17, 42] rely on language models such as
n-grams [17] or attention-based neural networks [42] to predict word-level text. The latter
[7, 35, 39] attempt to guide the model to catch textual semantics according to visual con-
text without using additional language models. For instance, [39] exploits a character-level
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occluded strategy to make the visual model learn linguistic information along with visual
features. Despite the effectiveness of both ways, each of them only captures textual seman-
tics from a single orientation. Inspired by their success, we propose a method to learn both
the explicit and the implicit textual semantics, promoting the ability of STR.

We propose a Masked Vision-Language Transformers (MVLT) for STR, with a Vision
Transformer (ViT) [6] encoder and a creatively designed multi-modal Transformer [23, 34,
43] decoder. The potential of Transformers [37] has been proved in the area of NLP and
CV, while the pretraining and fine-tuning pipelines of Transformer-based models further
boost the performance of down-streaming tasks. To this end, we adopt a two-stage training
strategy to train the model as follows:

In the first stage, we pretrain the model by borrowing the idea from masked autoencoders
(MAE) [11]. MAE splits an image into several patches, randomly masks a percentage of
them, and learns to reconstruct the masked ones. Different from MAE, our MVLT recognizes
scene text in addition to reconstructing the masked patches. To recognize text, we seek to
use linguistic information to assist the visual cues. Motivated by multi-modal Transformers,
which combine image regions with language semantics through a Transformer and learn the
interaction between the two, we build a multi-modal Transformer decoder to bring linguistic
information into our model. For the input of our multi-modal decoder, the visual part consists
of encoded patches and mask tokens; the textual part comes from the ground-truth text label
of the corresponding image and is formed into a sequence of character embeddings. We build
two sub-decoders to model explicit and implicit textual semantics, respectively. Similar
to MLM in VisualBERT [23], which masks some tokens in the textual input and predicts
them according to the visual and textual features, for one sub-decoder, we mask a part of
characters in the ground-truth text label and learn to predict the masked characters. The
visible characters serve as word-level textual cues, explicitly guiding the model to learn
linguistic knowledge. To endow the model with the ability to predict the correct word-
level text even without explicit textual input, which is closer to the application scenario of
STR, for another sub-decoder, we mask all input characters. The model is now left with
only visual cues and thus is pushed to learn linguistic information implicitly without an
additional language model. It is worth noticing that the two sub-decoders share parameters
during training for efficiency. Furthermore, as an extension of our MVLT, we propose a
simple but efficient method to use real-world unlabeled data together with labeled one in
pretraining.

In the second stage, we fine-tune the model, where the encoder takes the unmasked scene
text image as input, and the decoder outputs the predicted text. To better use the pretrained
knowledge, different from MAE or ViTSTR [2], which only fine-tune on the pretrained
encoder, we fine-tune on both the encoder and the decoder. Meanwhile, we propose an
iterative correction method to gradually modify the predicted text during iterations. In each
iteration, the input of the decoder consists of the image feature that is output from encoder,
and the text feature that is output from the previous iteration.

Our contributions are three-folds: (1) we propose a novel language-aware model for
STR, allowing for learning both the explicit and the implicit semantics, which gets superior
accuracy compared to previous works; (2) we design a masking-based strategy in pretraining
the model and exploit an iterative correction method to correct text predictions in the fine-
tuning stage. (3) we propose a method to further promote accuracy by leveraging labeled
and unlabeled training data.

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{Li, Yatskar, Yin, Hsieh, and Chang} 2019{}

Citation
Citation
{Su, Zhu, Cao, Li, Lu, Wei, and Dai} 2020

Citation
Citation
{Yu, Tang, Yin, Sun, Tian, Wu, and Wang} 2021

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{He, Chen, Xie, Li, Doll{á}r, and Girshick} 2022{}

Citation
Citation
{Li, Yatskar, Yin, Hsieh, and Chang} 2019{}

Citation
Citation
{Atienza} 2021



WU ET AL.: MASKED VISION-LANGUAGE TRANSFORMERS FOR STR 3

2 Related Work
One of the classical ways for STR is to extract visual features based on CNN, use RNN to
perform sequence labeling, and adopt Connectionist Temporal Classification (CTC) [9] as
a loss function [12, 32]. Recently, GTC [14] optimized the CTC-based method by using a
graph convolutional network (GCN) [21] to learn the local correlations of features. Some
works attempt to rectify the irregular text images [33, 41, 44]. For example, ASTER [33]
adopts Thin-Plate-Spline (TPS) [5] transformation, and ScRN [41] adds symmetrical con-
straints in addition to the TPS. Recent works [4, 16, 22, 27, 31, 40] brought insightful ideas
in dealing with challenging scenarios (occlusion, noise, etc.) by building language-aware
models.

Language-aware methods. Some methods [8, 17, 27, 42] rely on external language
models to extract the semantics. For example, SRN [42] builds a global semantic reasoning
module, which learns semantics based on the predicted text from the visual model. This
method is upgraded in ABINet [8], which develops a bidirectional cloze network to make
better use of bidirectional linguistic information, and utilizes an iterative correction for the
language model. Some other works [7, 35, 39] implicitly learn semantics without using lan-
guage models. For example, SVTR [7] recognizes both the characters and the inter-character
long-term dependence in a single visual model by using local and global mixing blocks. VST
[35] extracts semantics from a visual feature map and performs a visual-semantic interaction
using an alignment module. Most recently, some language-aware models explore more pos-
sibilities to boost the performance by considering spatial context [13], adding real-world
images to train the model in a semi-supervised way [1], or developing a re-ranking method
to get a better candidate output [30], while our work takes a step by extracting both the
explicit and the implicit semantics.

Transformer-based STR. Recently, Transformer has shown its effectiveness in STR
models [8, 28, 31, 39, 40, 42]. For instance, PIMNet [28] builds a bi-directional Transformer-
based parallel decoder to iteratively capture context information. Lately, based on ViT struc-
ture [6], ViTSTR [2] uses a ViT encoder to perform STR without using the decoder. Addi-
tionally, ViTSTR is initialized by pretrained parameters of DeiT [36]. We also apply a ViT
encoder in our model. However, unlike ViTSTR, we take the decoder into our architecture
and propose a new pretraining method to better fit the STR task.

3 Methodology
Our proposed MVLT is trained with two stages, including a pretraining stage, as shown in
Figure 1, and a fine-tuning stage, as shown in Figure 2 (a). In addition, we harness the
unlabeled data to enhance the training of the model, as shown in Figure 2 (b) and (c).

3.1 Preliminary
Vision Transformer (ViT). To model 2D image into Transformer, which is designed to
process 1D sequence, ViT [6] flattens an image by reshaping the image x ∈ RH×W×C into
a sequence of image patches x ∈ RN×(P2·C), where (H,W ) denotes the original scale of the
image, C is the number of channels, and (P,P) is the resolution of each image patch.

Masked autoencoders (MAE). MAE [11] randomly divides N image patches into Nu

unmasked ones and Nm masked ones. Correspondingly, x = [xu;xm] ∈ RN×(P2·C), where x is
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Figure 1: An illustration of MVLT in the pretraining stage.

the full set of image patches, xu is the set of unmasked patches, and xm is the set of masked
patches. The encoder of MAE is a ViT, which only operates on xu to learn the visual feature
embeddings:

vu = encoder(xu), (1)

where vu ∈ RNu×D1 and D1 is the feature dimension in the encoder. The mask token vm is
introduced after the encoder, constituting the input of the decoder, together with vu. The
decoder reconstructs the image as follows:

v̂m, v̂u = decoder(vm,vu), (2)

where vm ∈ RNu×D2 and D2 is the feature dimension in the decoder. v̂m ∈ RNm×(P2·C) and
v̂u ∈ RNu×(P2·C). The Mean Squared Error (MSE) loss is used to optimize MAE model.

3.2 Pretraining Stage
In pretraining, MVLT intends to reconstruct the masked image patches and recognize the
scene text from the masked image. Like MAE, the reconstruction of image patches helps our
model to learn an effective visual representation. However, recognizing texts is beyond the
scope of MAE, and we propose a novel language-aware model to deal with it, as shown in
Figure 1.

Masked Encoder. We use ViT as the encoder of MVLT, which is same as Eq. (1). Each
image is split into N patches. With a mask ratio of 0.75, we divide the patches into a set of
masked ones xm ∈ RNm×(P2·C), and a set of the unmasked ones xu ∈ RNu×(P2·C). The encoder
embeds xu by using it as the input of a linear layer and then adding the positional embeddings
with the output of the linear layer. Next, the encoder uses a series of Transformer blocks to
learn the visual embedding: vu = encoder(xu).

Masked Decoder. We build a multi-modal Transformer as the decoder to exploit the
visual cues and linguistic information in each image. The visual cues come from vu. The
linguistic information comes from the word-level text label that is character-wise mapped
into a sequence of learnable character embeddings t ∈ RL×D2 , where L is the length of the
character embedding sequence. Similar to the image patches, we denote t = [tu, tm], where
tu ∈ RLu×D2 is the unmasked character embeddings, and tm ∈ RLm×D2 is a sequence of the
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Figure 2: Sub-figure (a) shows our model in the fine-tuning stage. Sub-figure (b) illustrates
our model using labeled data in the pretraining stage. Sub-figure (c) illustrates our model
using both labeled and unlabeled data in the pretraining stage.

special "<mask>" token embeddings, Lu and Lm are the corresponding length. We add posi-
tional embeddings to (vm, vu, tm, tu) to build the decoder input. For symbolic simplification,
we keep the symbols before and after adding the positional embeddings the same. We de-
sign two sub-decoders (decoder1 and decoder2), applying different masking strategies on t
to learn textual semantics. Note that the two sub-decoders share parameters during pretrain-
ing. Our decoder is denoted as:

v̂m, v̂u, t̂m, t̂u = decoder(vm,vu, tm, tu), (3)

where v̂m ∈ RNm×(P2·C), v̂u ∈ RNu×(P2·C), t̂m ∈ RLm×M , t̂u ∈ RLu×M , and M is the number of
character’s category.

Modeling explicit language semantics. We set the text mask ratio of decoder1 to 0.2. For
instance, if the text label consists of 10 characters, we randomly mask 2 of them. The length
of unmasked character embeddings Lu = 8, and the length of masked ones Lm = L− Lu.
With the unmasked character embeddings tu serving as linguistic context, decoder1 explicitly
learns textual semantics.

Modeling implicit language semantics. For decoder2, we set the mask ratio of the
character embeddings as 1.0. With this setting, the length of unmasked character embeddings
Lu = 0, and the masked ones Lm = L. As the characters are totally masked, decoder2 only
uses the visual information to reconstruct v̂m and predicts the word-level text label t̂m, which
pushes it to learn implicit textual semantics from visual cues.

Pretraining objective. We use the MSE loss to optimize the reconstructed image patches
and use the Cross Entropy Loss to optimize textual prediction:

Lpretraining = α ·Lv1 +β ·Lv2 + γ ·Lt1 + ε ·Lt2 , (4)

where {α ,β ,γ , ε} are trade-off parameters. For decoder1, Lv1 = MSE(v̂m,ym), where ym ∈
RNm×(P2·C) denotes the pixel values of the masked image patches. Lt1 =Cross-Entropy(t̂m,yt),
where yt ∈ RL×1 is the ground-truth character index, and each element in yt ∈ [1,M]. For
decoder2, Lv2 = MSE(v̂m,ym), and Lt2 = Cross-Entropy(t̂m,yt).
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3.3 Fine-tuning Stage

We fine-tune the above pre-trained encoder and decoder to further promote the performance
of our model on the STR task. Motivated by the iterative strategy of ABINet [8], we design
an iterative correction method that fits the architecture of our model, as shown in Figure 2
(a). This iterative correction method is an alternative during fine-tuning.

Encoder. The full set of image patches x ∈RN×(P2·C) is taken as the input of the encoder
without utilizing the masking operation:

v = encoder(x), (5)

where v ∈ RN×D1 and N is the number of image patches.
Decoder. In the pretraining stage, our encoder takes the output of the encoder (visual-

related feature) and a sequence of character embeddings (linguistic-related feature) as input.
However, in the fine-tuning stage, when the iterative correction method is not used or be-
fore the first iteration, only the visual-related feature is visible by the decoder, without the
linguistic-related feature. Thus, to be consistent with the input of the pretrained decoder, we
use a sequence of "<mask>" token embeddings as the character embedding, tm ∈ RL×D2 .
Different from the pretraining stage, where the output of the decoder consists of recon-
structed image patches and the predicted text, during the fine-tuning stage, the predicted
image patches are ignored, and only the predicted text is kept because the STR task only fo-
cuses on the text prediction. The input and output of the decoder are formalized as follows:

t̂ = decoder(v, tm), (6)

where t̂ ∈ RL×M is the logits of predicted text.
Iterative correction. We regard the output t̂ as a raw text prediction that will be corrected

during iterations. The prediction probability of each character is computed based on t̂. A
linear projection layer takes the prediction probabilities as the input. It outputs a sequence of
character-related feature representations, which is set as the new character embedding input
at the current iteration. For example, we perform K times of iterative corrections by the
follows: for the 1st iteration, we pass t̂itr=0 = t̂ into a softmax layer and then a linear layer
to get titr=1, which is taken as the new character embedding to replace the totally masked
character embeddings tm in Eq. (6). Then, the k-th (k ∈ [1,K]) iteration process is formalized
as:

probitr=k = softmax(t̂itr=k-1), (7)
titr=k = linear(probitr=k), (8)
t̂itr=k = decoder(v, titr=k), (9)

The output of the K-th iteration is regarded as the final corrected text prediction.
Fine-tuning objective. Different from the pretraining objective, we only focus on opti-

mizing the textual prediction by leveraging the Cross Entropy Loss:

Lfine-tuning =
1
2

Cross-Entropy(t̂itr=0,yt)+
1

2(K −1)

K

∑
j=1

Cross-Entropy(t̂itr=j,yt). (10)
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3.4 Using Unlabeled Real Dataset

Our pretraining objective includes: (a) reconstructing the masked image patches; and (b)
recognizing the scene texts. Since (b) requires leveraging labeled scene text to attain su-
pervised training, we use labeled synthetic datasets for training. However, there is a mass
of real-world data, which is unlabeled and costs much to label. Fortunately, we find it
easy to use unlabeled data to enhance learning features during pretraining. Specifically,
as shown in Figure 2 (c), we concatenate the unlabeled image data and the labeled image
data along the batch dimension as a new input batch. For a batch of output O = {Osyn,Our},
Osyn = {(v̂m, v̂u, t̂m, t̂u)1, ...,(v̂m, v̂u, t̂m, t̂u)N1} is the output corresponding to the labeled syn-
thetic datasets, and Our = {(v̂′m, v̂′u, t̂ ′m, t̂ ′u)1, ...,(v̂′m, v̂′u, t̂ ′m, t̂ ′u)N2} is the output corre-
sponding to the unlabeled real datasets, where N1 is the number of labeled synthetic data
in the batch, and N2 is the number of unlabeled real data in the batch. Osyn is optimized on
the loss function of Eq. (4), while Our is optimized only on a MSE loss Lur = MSE(v̂′m,y′m),
v̂′m is the output corresponding to the masked patches of the real data, and y′m is the tar-
get pixels of the real data. Through this semi-supervised pretraining process, we can learn
real-world domain knowledge, thus reducing the gap between the pretraining data and the
real-world scenario.

4 Experiment

Datasets. To conduct supervised training, we use two synthetic datasets, MJSynth (MJ) [15,
18] and SynthText (ST) [10], as the labeled training dataset of MVLT. We use all of the 14
real datasets that collected in [3], and remove all the image labels to build our unlabeled real
dataset. We denote the unlabeled real dataset as UR for a simplified description. We use
the same test dataset as ABINet [8], including six standard benchmarks, which consists of
857 images from ICDAR2013 (IC13) [19], 1,811 images from ICDAR2015 (IC15) [20], 647
images from Street View Text (SVT) [38], 645 images from SVT-Perspective (SVTP) [26],
3,000 images from IIIT 5-K Words (IIIT) [25], and 288 images from CUTE80 (CUTE) [29].

Model detail. Images are scaled to 112×448, with a resolution of 14×14 for each patch.
Although the image size is different from ViT [6], we keep the number of patches the same.
Our encoder uses the same settings as ViT-B in MAE [11]. We use a lightweight decoder,
which has depth 4, width 512, and 8 attention heads. Thus the dimension D1 and D2 are set
to 768 and 512, respectively. The length of the character embedding sequence, L, is set to
27, because, according to our observation, the vast majority of the word is shorter than 27
characters. In the pretraining stage, to build the input of decoder1, we pad the text labels
that are shorter than L by a special token "<mask>". The input of decoder2 is built from L
"<mask>" tokens.

Training detail. The trade-off parameters α and β are set to 0.5, γ and ε are set to
0.01.In both the pretraining and the fine-tuning stage, an AdamW [24] optimizer and a cosine
learning rate decay scheduler are applied. In the pretraining stage, we set the initial learning
rate to 1.5e-4 and weight decay to 0.05. When using only the labeled data, the batch size is
set to 4,096. When using both the labeled and the unlabeled data, the batch size is 6,144, with
4,096 labeled images and 2,048 unlabeled ones. We conduct a total of 120,000 iterations,
with 8,000 warm-up iterations. The optimizer momentum is set to β1=0.9 and β2=0.95. We
do not use grad clip during pretraining. In the fine-tuning stage, the batch size is 1,024,
the initial learning rate is 1e-5, and the weight decay is 0.05. We conduct a total of 20,000
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Table 1: Accuracy results of our MVLT and SOTA methods on six regular and irregular STR
datasets. "UR" denotes the unlabeled real dataset.

Method Datasets Regular Text Irregular Text
IC13 SVT IIIT IC15 SVTP CUTE

ASTER [33] MJ+ST 91.8 89.5 93.4 76.1 78.5 79.5
ESIR [44] MJ+ST 91.3 90.2 93.3 76.9 79.6 83.3
ScRN [41] MJ+ST 93.9 88.9 94.4 78.7 80.8 87.5

PIMNet [28] MJ+ST 93.4 91.2 95.2 81.0 84.3 84.4
SAR [22] MJ+ST 94.0 91.2 95.0 78.8 86.4 89.6
SRN [42] MJ+ST 95.5 91.5 94.8 82.7 85.1 87.8
GTC [14] MJ+ST 94.3 92.9 95.5 82.5 86.2 92.3

VisionLAN [39] MJ+ST 95.7 91.7 95.8 83.7 90.7 88.5
PREN2D [40] MJ+ST 96.4 94.0 95.6 83.0 87.6 91.7
S-GTR [13] MJ+ST 96.8 94.1 95.8 84.6 87.9 92.3
ABINet [8] MJ+ST 97.4 93.5 96.2 86.0 89.3 89.2

MVLT MJ+ST 97.3 94.7 96.8 87.2 90.9 91.3
MVLT∗ MJ+ST+UR 98.0 96.3 97.4 89.0 92.7 95.8

iterations, with 8,000 warm-up iterations.The optimizer momentum is set to β1=0.9 and
β2=0.999. The grad clip is set to 2.0. The layer-wise learning rate decay is set to 0.75.
We perform 3 times of iterative corrections in fine-tuning the model and 3 times of iterative
corrections in testing the model. We use 8 NVIDIA RTX A6000 GPUs, with 48GB memory,
to conduct the experiments, and use gradient accumulation to maintain a large effective batch
size. The pretraining stage takes around 3.5 days, and the fine-tuning stage takes around 5
hours.

Data augmentation. In the pretraining stage, we apply RandomResizedCrop to augment
data, which is similar to MAE. Specifically, we set the scale to (0.85, 1.0) and the ratio to
(3.5, 5.0). In the fine-tuning stage, we use the same data augmentation method as ABINet,
including rotation, affine, and perspective.

4.1 Performance Analysis

Comparisons with state-of-the-arts. Table 1 summarizes the comparison result of our pro-
posed method with eleven SOTA. MVLT is trained on ST and MJ, and MVLT* uses extra
unlabeled data. MVLT achieves the highest accuracy in most of the datasets. The result
proves the effectiveness of our design of model architecture and our two-stage training pro-
cedure. Benefiting from learning linguistic knowledge, MVLT is more tolerant to irregular
texts, leading to a higher performance even compared with the methods that use rectification
modules, such as ASTER, ESIR, and GTC. Compared with other language-aware models,
including VisionLAN, ABINet, PREN2D, etc., our model performs better on the vast major-
ity of the test datasets, further justifying the capture of textual semantics. To perform a fair
comparison, MVLT uses the same data and the data augmentation method as ABINet in the
fine-tuning stage. MVLT outperforms ABINet with 1.2%, 0.6%, 1.2%, 1.6%, and 2.1% on
SVT, IIIT, IC15, SVTP, and CUTE datasets, respectively.

Using unlabeled real dataset. As shown in Table 1, MVLT* outperforms MVLT on
most test datasets. Specifically, MVLT* largely promotes the result of recognizing irregular
texts, showing that using unlabeled real data is able to enhance the ability of STR, leading to
a more practicable model facing the real-world scenario.

Iterative correction. Iterative correction is applied during training the model in the fine-
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Figure 3: Accuracy of iterative correction in the training and testing process.

tuning stage, as well as testing. Figure 3 shows the results with different settings of the iterate
times, which suggests that the iterative correction method can help obtain higher accuracy.

4.2 Ablation Study

Table 2: The results of ablation study. "Iter" represents using iterative correction method in
training the model in the fine-tuning stage, and in testing on the test datasets.

Lv1 Lt1 Lv2 Lt2 Iter Regular Text Irregular Text TotalIC13 SVT IIIT IC15 SVTP CUTE
√ √ √ √ √

97.3 94.7 96.8 87.2 90.9 91.3 93.5√ √ √ √
97.0 94.1 96.8 86.6 89.6 90.6 93.2√ √ √
96.8 94.4 96.3 87.0 89.9 90.6 93.1√ √
96.7 94.6 96.3 86.7 90.2 91.0 93.1√ √ √
96.4 92.4 96.4 86.7 89.3 91.0 92.8√ √
95.9 92.7 96.0 86.3 88.7 89.6 92.4√
96.4 91.3 96.5 85.5 88.8 89.9 92.3

The statistics in Table 2 show that: 1) Using only the visual-related loss Lv1 is not as
effective as using both the visual-related and the textual-related losses. 2) Losing either the
loss related to learning explicit semantics or the loss related to learning implicit semantics
will result in a decrease in accuracy. 3) Learning the implicit textual semantics leads to a
higher leap in accuracy than learning the explicit semantics. 4) The iterative correction is
especially useful when the model is trained with explicit textual semantics.

4.3 Visualization and Analysis

Figure 4 and Figure 5 display several visualization results after the pretraining and fine-
tuning stage. The images are from test datasets. Figure 4 suggests that the model has already
acquired visual and linguistic semantic knowledge through the pretraining stage. Figure 5
shows a stronger model after fine-tuning, which is capable of dealing with more challenging
real-world images. More examples are shown in the supplementary material.
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Input: <mask>estauran<mask>
Predict: r, t

Input: <mask><mask>...<mask>
Predict: restaurant

Ground-truth: restaurant

Input: w<mask>ldcats
Predict: i

Input: <mask><mask>...<mask>
Predict: wildcats

Ground-truth: wildcats

Figure 4: Visualization of pretrained MVLT. For each example, we show the masked image
(left), our image reconstruction and text prediction from decoder1 (mid-left) and decoder2
(mid-right), and the ground-truth (right).

pioneer christmas everything promod

christmas tagine orscar fashion

important hepp water start

athletic finish salmon optimum

Figure 5: Visualization of fine-tuned MVLT. We show successfully recognized difficult ex-
amples with occlusion (1st row), complex font styles (2nd row), blur (3rd row), and defor-
mation (4th row).

5 Conclusion

We propose a Masked Vision-Language Transformers (MVLT) for STR, getting superior
results compared to the state-of-the-art models. For pretraining the model, we design a
masking strategy to lead the model in learning both the explicit and implicit textual seman-
tics. Experiment results have proved the effectiveness of our model in capturing semantics
and the usefulness of both kinds of semantics. During training and testing our model in the
fine-tuning stage, we apply an iterative correction method, which boosts the performance of
STR. Furthermore, the use of unlabeled real data improves the applicability of our model in
real-world scenarios.
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