A Experiment on CIFAR100

We have run additional experiments on CIFAR100 following the setup in DeiT [2] but w/o
pretraining on ImageNet1K.
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Figure 1: Training SP-ViT (DeiT [2] as baseline) on CIFAR100.
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Figure 2: Accuracy(%) of SP-ViT on ImageNet-100 with different numbers of SP-SA layers.
Fig. 2a and Fig. 2b show consistent improvements of our SP-ViT over DeiT Baselines with
a total number of 12 and 16 layers respectively.

We first investigate how the model performance is affected by the number of SP-SA lay-
ers. The layers are substituted from bottom to top and a classification token is inserted after
the last SP-SA layer. It is shown in Fig. 2a that substituting a number of SA layers with
SP-SA results in improved accuracy comparing to DeiT baseline (0 layer). In general, the
performance improves as more layers are substituted. For a model with 12 layers, the best
performance is achieved when 10 layers are substituted. When substituting all but the last
SA layer with SP-SA, the performance drops slightly. We hypothesize that when the classi-
fication token is only involved in the last layer, the class-specific features are not adequately
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Sub. layers

Cls token insertion layers

Top-1 (%)

0
0
10

0
10
10

71.6
81.7
83.3

0
12

Global Average Pooling
Global Average Pooling

79.5
81.7

Table 1: Eliminate the effect of inserting the class token at later layers on ImageNet-100.

extracted. We further investigated a deeper model in Fig. 2b, and found the similar trend.
The best performance is achieved when the first to the penultimate layer are substituted. As
discussed in the main text, we add the classification token directly after SP-SA layers be-
cause it has no valid 2D relative coordinate. To exclude the influence of inserting it at deeper
layers instead of the first, we conduct a further comparison in Tab. 1.

C More Experiment Details

We show in Tab. 2 the default hyperparameters for training our SP-ViT on ImageNet-1K
based on DeiT and LV-ViT respectively. All hyperparameter settings follow the baselines’
except that for DeiT-based SP-ViTs we adopt a smaller learning rate.

Base Config. DeiT LV-ViT
Supervision Standard Token labeling
SP-SA layers 10 10
Epoch 300 300
Optimizer AdamW AdamW
Batch size 1024 1024

LR 2.5¢—4.butchsize  j,_ 3. batchsize
LR decay cosine cosine
Weight decay 0.05 0.05
Warmup epochs 5 5

Label smoothing & 0.1 0.1
Stoch. Depth 0.1 0.1
Repeated Aug v -
RandAug 9/0.5 9/0.5
Mixup prob. 0.8 -
Erasing prob. 0.25 0.25

Table 2: Default hyperparameters for our SP-ViTs on ImageNet-1K.

For our SP-ViT trained on ImageNet-1K, we further adopt the Conditional Positional
Encoding (CPE) [1], which is found to be effective as shown in Tab. 3.
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Model CPE [1] Top-1 (%)

. - 83.7
SP-ViT-S v 83.9
. - 84.7
SP-ViT-M v 34.9
. - 85.3
SP-ViT-L v 355

Table 3: Effect of Conditional Positional Encoding [1] on ImageNet-1K.

D Python Implementation

We also list our Pytorch implementation of SP-SA List. 1 SP-SA can be easily integrated
into any existing vision transformer models by directly replacing a number of SA layers.
Calculating the relative coordinates to query patches is trival, so this part of code is not
included for simplicity. Note that the insertion of classification token should be moved after
SP-SA layers, as mentioned in the main text.

E More Visualization

We provide more examples of learned Spatial Priors (SP) by our SP-ViT based on DeiT-
Small and trained on ImageNet-1K in Fig. 3 and Fig. 4.
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Listing 1 SP-SA SP-SA.py

import torch

1
2 from torch import nn
3
4 class SP_SA (nn.Module) :
5 def __ _init__ (self, dim, num_heads=8, gk_scale=None, attn_drop=0.,
proj_drop=0., rel_indices=None, xxkwargs):
6 super () .__init__ ()
7 self.num_heads = num_heads
8 self.dim = dim
9 head_dim = dim // num_heads
10 self.scale = gk_scale or head_dim % -0.5
11 self.v = nn.Linear (dim, dim, bias=False)
12 self.gk = nn.Linear (dim, dim » 2, bias=False)
13 self.wl = nn.Linear (2, dim, bias=True)
14 self.w2 = nn.Parameter (torch.zeros (dim, 1))
15 self.b2 = nn.Parameter (torch.ones (num_heads))
16
17 self.attn_drop = nn.Dropout (attn_drop)
18 self.proj = nn.Linear (dim, dim)
19 self.proj_drop = nn.Dropout (proj_drop)
20 self.act = nn.RelLU()
21 self.rel_indices = rel_indices
22
23 def forward(self, x):
24 B, N, C = x.shape
25 attn = self.get_attention (x)
26
27 v = self.v(x).reshape (B, N, self.num_heads, C // self.num_heads).
permute (0, 2, 1, 3)
28 x = (attn @ v).transpose(l, 2).reshape(B, N, C)
29 x = self.proj(x)
30 x = self.proj_drop (x)
31 return x
32
33 def get_attention(self, x):
34 B, N, C = x.shape
35
36 # Calculating Patch Score
37 gk = self.gk(x).reshape(B, N, 2, self.num_heads, C // self.
num_heads) .permute (2, 0, 3, 1, 4)
38 a, k = gk[0], gk[1]
39 patch_score = (q @ k.transpose (-2, -1)) * self.scale
40
41 # Calculating Spatial Prior
42 sp_hidden = self.wl(self.rel_indices) .view(l, N, N,
num_heads, self.dim // self.num_heads)
43 sp = torch.einsum(’nm,hijnm->hijn’, (self.w2.view(self.num_heads,
-1), self.act(sp_hidden))) + self.b2
44 sp = sp.repeat(B, 1, 1, 1)
45
46 enhanced_attention = (patch_score % sp.permute (0, 3,
softmax (dim=-1)
47 attn = self.attn_drop (enhanced_attention)

48 return attn
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Figure 3: More Visualization of the learned 2D SPs, content scores and the enhanced atten-
tion of layer 1-6 for the 121" query patch.
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Figure 4: More Visualization of the learned 2D SPs, content scores and the enhanced atten-
tion of layer 7-12 for the 121" query patch. Note that layer 11 and 12 are vanilla SA layers,
thus no spatial priors are existed.



