

Flow-based GAN for 3D Point Cloud **Generation from a Single Image** Yao Wei¹, George Vosselman¹, Michael Ying Yang¹

¹University of Twente, The Netherlands

Previous works which only consider either explicit or implicit generative modeling of point clouds, suffer from fixed resolution and/or low quality issues.

Contribution

- A hybrid explicit-implicit generative modeling scheme for 3D point cloud generation, which inherits the flow-based generative methods for generating an arbitrary number of points, while guiding the flow-based generator to reconstruct high-quality point clouds by leveraging an adversarial training strategy.
- State-of-the-art performance for single image to 3D point cloud generation task on the ShapeNet dataset.

Method

Fig. 3. Results on the synthetic images from the ShapeNet dataset.

Fig. 4. Results on the real images from the PASCAL3D+ dataset.

Quantitative Results

Fig. 1. Overall framework.

- A generative adversarial framework performs the hybrid explicit-implicit generative modeling of point clouds.
- Flow-based Generator allows an arbitrary number of points to be sampled in the inference phase.
- Cross-modal Discriminator guides the generator to produce high-quality point clouds.

Table 1. Results on three categories of the ShapeNet dataset

Methods	Airplane			Car			Chair		
	CD↓	EMD↓	F1↑	CD↓	EMD↓	F1↑	CD↓	EMD↓	F1 ↑
DPF-Nets [19]	4.11	10.89	72.61	3.79	10.46	46.58	5.42	11.40	46.82
MixNFs [26]	2.82	9.31	77.63	3.73	10.38	47.10	5.41	11.33	46.98
Ours	2.33	8.68	79.94	3.60	10.24	47.71	5.02	10.99	49.09
Oracle	0.50	4.48	97.62	1.55	6.34	73.65	1.11	5.92	84.32

Table 2. Results on all 13 categories of the ShapeNet dataset

Methods	CD↓	EMD↓	F1↑	Speed [↑]
PRN [18]	7.56	11.00	53.1	-
AtlasNet [11]	5.34	12.54	52.2	-
DCG [32]	6.35	18.94	45.7	-
Pixel2Mesh [33]	5.91	13.80	-	-
DPF-Nets [19]	5.55	11.11	51.7	259
MixNFs [26]	5.66	11.20	52.3	5
Ours	5.32	11.00	53.0	273
Oracle	1.10	5.70	84.0	-

Fig. 2. Architecture of the cross-modal discriminator *D*.

Table 3. Ablative results on all 13 categories of the ShapeNet dataset w.r.t. different architectures.

Generator	Discriminator	CD↓	EMD↓	F1↑
w Shape_flow	w/o	5.55	11.11	51.7
w/o Shape_flow	w/o	5.50	11.20	52.3
w/o Shape_flow	w D	5.32	11.00	53.0

Flexibility: arbitrary resolution, NFs. Efficiency: single-flow-based, GANs.

Email: yao.wei@utwente.nl