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Abstract

A membership inference attack (MIA) identifies if an instance was included in the
victim model’s train dataset. Without an appropriate defense mechanism, MIA can result
in serious privacy breaches. Although several methods have been proposed to protect
membership privacy in discriminative models, research into generative adversarial net-
works (GANs), remains insufficient despite their vulnerability to MIAs. In this study, we
propose a membership privacy-preserving GAN (MP-GAN), which plays an additional
adversarial game for membership privacy between an auxiliary membership inference
network M and a GAN. M seeks to find out whether an instance belongs to the reference
or train dataset, whereas the generator and discriminator of the GAN attempt to deceive
M. Our theoretical analysis results demonstrate that the MP-GAN improves member-
ship privacy by not learning sample-specific features. We perform extensive empirical
evaluations to show that the MP-GAN can successfully defend against MIAs under ad-
vantageous scenarios to the attacker (for example, white-box access to networks and
small training dataset size). Furthermore, we demonstrate that the MP-GAN has several
advantages over other privacy-preserving GAN training techniques.

1 Introduction
Numerous applications based on deep learning models provide high-quality services owing
to recent advancements in machine-learning-as-a-service platforms. However, some stud-
ies [12, 16] have demonstrated that such models are susceptible to MIAs. A MIA is a privacy
attack that reveals if a specific instance belongs to the victim model’s train dataset. Overfit-
ting is one of the causes of MIAs [15, 19] because model responses (such as confidence
score and internal activation) to data points differ depending on whether the model overfits
those points. Numerous studies have successfully extracted information from discriminative
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Figure 1: Overview of MP-GAN training phase. The MP-GAN aims to make training and
reference data indistinguishable in the response space Q. Here, Xtr denotes a training dataset
(that is, member dataset), Xre denotes a reference dataset that plays the role of a non-member
dataset in the training phase, z denotes a noise vector, G denotes a generator, and D denotes a
discriminator. The internal activation of D is selected as the MP-GAN’s response; that is, the
response network Q is a sub-network of D. M represents a membership inference network
that predicts the membership of x based on the response Q(x). The parameter in denotes the
input data, which are a member of Xtr, and out denotes the input data which are not a member
of Xtr. The MP-GAN is trained through an adversarial game for membership privacy ((G,D)
vs. M).

models in privacy-sensitive applications, such as medical record analysis [1], and federated
learning [12], and contrastive learning [9].

Generative adversarial networks (GANs) [6] trained using an adversarial game (AG) be-
tween a discriminator (D) and generator (G) are also vulnerable to MIAs [2, 7]. Such attacks
are particularly effective when the training dataset is small because D and G can easily over-
fit each data record [2]. Therefore, robust training methods for D and G against MIAs on
small datasets are essential.

Models that preserve differential privacy (DP) [5] are typically robust to MIAs [14].
However, current DP-based GANs [3, 18, 20] exhibit a severe privacy-utility trade-off. This
is because the DP reduces the privacy level as the number of data accesses increases. The
victim model’s privacy level decreases with each training iteration. Therefore, a model that
preserves privacy more practically than DP-based models is required.

We propose the membership privacy-preserving GAN (MP-GAN), a novel MIA de-
fense with an AG for membership privacy that directly regularizes both G and D. The MP-
GAN combines a membership inference network M that determines whether the training
dataset includes the input sample, based on the GAN’s responses. The MP-GAN is trained
using a two-player AG for data generation (G vs. D) and a three-player AG for membership
privacy ((G,D) vs. M).

We introduce the reference data, which are regarded as non-member data in training
G and D, to make M learn the differences between the responses of the non-member and
member data. The reference dataset is only used to update the parameters of M, whereas
the parameters of M, D and G are updated using the training dataset. M attempts to find out
whether the data provided are from the training or reference dataset based on the response
from the GAN. D and G are trained to deceive M by providing indistinguishable responses
to the provided data. We theoretically demonstrated how the AG for membership privacy
improves membership privacy by preventing the MP-GAN from learning sample-specific
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features.
Partition-based GANs, such as PAR-GAN [4] and privGAN [10] have been proposed

to improve membership privacy by regularizing G using multiple Ds trained on partitioned
training datasets. Partition-based GANs’ Ds are vulnerable to MIAs because each D can ac-
cess only 1/N of the training dataset, where N(> 1) denotes the number of partitions, making
it easy for Ds to overfit to the training samples. Although generalized G indirectly regular-
izes Ds, it has only a marginal effect on membership privacy. Compared with partition-based
GANs, the MP-GAN has fewer parameters to learn, and D of the MP-GAN can access more
samples. Except for only a small amount (approximately 10%) of the reference data, D of
our method can access most (approximately 90%) of the training samples, which allows D
to reduce overfitting. Additionally, the MP-GAN directly improves D’s membership privacy
using the AG for membership privacy.

We empirically demonstrated that the MP-GAN successfully preserves membership pri-
vacy. We assume an evaluation scenario that is significantly beneficial to the adversary where
1) the adversary is accessible to model weights; 2) the training dataset’s size is sufficiently
small for the target model to overfit [2, 8], and 3) the adversary is aware of how many data
points in the attack data are member or non-member. However, the MP-GAN significantly
reduces the attack success rate against state-of-the-art MIAs. In addition, the MP-GAN out-
performs DP-based and partition-based GANs concerning the empirical privacy-utility trade-
off.

The contributions of this study and the proposed MP-GAN are as follows:

1. We suggest the MP-GAN, a novel defense framework for GAN against MIAs. The
MP-GAN aims to make the responses to member and non-member data indistinguish-
able through a three-player adversarial game with a G, D and membership inference
network M.

2. We discuss the theoretical analyses of the MP-GAN’s adversarial games and how
the MP-GAN improves membership privacy by not learning sample-specific features.
Through experiments, we corroborate that the MP-GAN eliminates sample-specific
information from the training data.

3. On benchmark datasets, we demonstrate that the MP-GAN effectively reduces the
MIA’s performance, even under disadvantageous conditions for the data holder: large
target models trained on a small dataset and white-box access. We also compare the
proposed method with DP-based and partition-based GANs and show that the MP-
GAN has a better empirical privacy-utility trade-off.

2 Background

2.1 MIA against GANs
In the MIA scenario, the attackers attempt to find out whether an instance is present in
the victim model’s train dataset. This objective is generally achieved by observing how the
target model responds to certain input queries. For example, the confidence score, internal
activation, or gradients of the member data should be distinguishable from those of input
queries never seen by the model [12].

The two networks composing GANs, D and G, are susceptible to MIAs against GANs.
An attack method against D [7] uses the validity score D(x) as a response. Because D(x)
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reflects an authenticity of x obtained from the training data distribution, it predicts x as mem-
ber data if D(x) is above a predetermined threshold. The distance between x and the recon-
struction of x (which has the smallest distance from x among the possible synthetic images
generated from G) is used as a response in an attack method against G [2]. The concept is
that because G reconstructs samples similar that resemble those of Xtr, the distance from
the reconstruction is larger for the non-member data than that for member data. The method
used to calculate these distances is selected based on the MIA scenario; in black-box MIA,
the Monte Carlo-based method is used, whereas in white-box MIA, the optimization-based
method is used.

2.2 Adversarial regularization of membership privacy

An auxiliary network for membership inference was proposed to build a membership privacy-
preserving discriminative model [11]. The target and membership inference models are
trained through an AG using the given training and reference datasets. The direct application
of [11] to the GAN is a two-player AG for membership privacy using training and reference
samples without considering synthetic data generated by GANs. The MP-GAN performs
a three-player AG for membership privacy to address the membership of a synthetic sam-
ple (Section 3.2). This method significantly improves the synthetic samples’ quality (Sec-
tion 4.5).

3 MP-GAN

For convenience of expression, we consider two disjoint infinite datasets: a member dataset
Xin and a non-member dataset Xout . MIAs determine whether a data point x is included in
Xin or Xout using the responses from the target network. To make a GAN robust to MIA, the
GAN’s responses to xin ∈ Xin and xout ∈ Xout should be indistinguishable.

We divided Xin into two disjoint datasets: training dataset Xtr ⊂ Xin and reference dataset
Xre ⊂ Xin. Each dataset served as a member or a non-member during training. The MP-GAN
aims to make the GAN’s responses to xtr ∈ Xtr and xre ∈ Xre indistinguishable. Two AGs
are used to train an MP-GAN: an adversarial game for membership privacy (AGmp) and an
adversarial game for generation (AGgen). AGmp regularizes the GANs to avoid overfitting
Xtr using Xre.

3.1 Adversarial game for generation

Let X and Z represent the data and noise spaces, respectively. During AGgen between gen-
erator G : Z → X and discriminator D : X → [0,1], the MP-GAN learns the distribution of
Xtr and generates synthetic data xg from the learned distribution. The objective of AGgen of
MP-GAN is the same as that of vanilla GAN [6], as follows:

min
G

max
D

Ugen(D,G) = Ex∼ptr [logD(x))]+Ex∼pg [log(1−D(x))] (1)

where Ugen, ptr, and pg denote the utility function of AGgen, the distribution of Xtr and xg,
respectively. The optimal point of AGgen is pg(x) = ptr(x) in X .
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3.2 Adversarial game for membership privacy
Based on the response of the GAN to x, MIAs try to determine the membership of the query
sample x. Here, we define the general response of the GAN as Q(x), where Q : X → Q
denotes the response network and Q denotes the GAN’s response space. As shown in Fig. 1,
we set Q as a subnetwork of D and Q as the output space of Q.

To ensure the membership privacy of the GAN, we introduced an auxiliary binary clas-
sification module M (that is, membership inference network M : Q → [0,1]). Based on the
response Q(x), M predicts the membership of x. During AGmp, M predicts whether x ∈ Xtr
(that is, M(Q(x)) = 1) or not (that is, M(Q(x)) = 0), whereas D and G attempt not to disclose
the membership information of x through Q(x).

To train M in a supervised learning manner, we introduce a disjoint reference dataset
Xre (that is, Xtr ∩Xre = /0). This dataset was inspired by existing MIA studies on different
models [11, 16]. Because Xre is not used to update the parameters of (G,D), M predicts
xre ∼ pre as a non-member of Xtr, where pre denotes the distribution of Xre. Responses from
Xtr and Xre are indistinguishable when using AGmp, and Q is trained to improve membership
privacy. Consequently, because D is a super-network of Q and D\Q is deterministic, all D’s
internal responses are therefore indistinguishable, which satisfies membership privacy.

Furthermore, we incorporate the synthetic data xg generated by G in AGmp; M pre-
dicts xg as a member of Xtr (that is, M(Q(xg)) = 1), whereas (D,G) deceives M (that
is, M(Q(xg)) = 0). When G learns the data distribution through D, membership privacy-
preserving D indirectly makes G membership private without considering the membership
of xg. However, the MP-GAN updates parameters of G in both AGmp and AGgen, allowing for
faster convergence. We discovered that xg is of better quality when G’s membership privacy
is directly guaranteed by considering the membership of xg (Section 4.5). The following is a
definition of objective of AGmp:

min
D,G

max
M

Ump(M,D,G) = Ex∼pre [log(1−M(Q(x)))]

+αEx∼ptr [logM(Q(x))]+(1−α)Ex∼pg [logM(Q(x))]
(2)

where Ump and α ∈ [0,1] denote the utility function of AGmp, and a hyper-parameter for
the weights of xtr and xg, respectively. We define qtr,qre and qg as the distributions of the
responses Q(xtr), Q(xre), and Q(xg) on Q, respectively.

3.3 Optimization
Because the MP-GAN plays AGgen and AGmp simultaneously, the parameters of the MP-
GAN are updated to optimize both Ugen and Ump. We weigh Ump by the hyper-parameter λ ;
subsequently, the parameters are updated to minimize the following losses:

LD =−Ugen +λUmp, LM =−λUmp, LG =Ugen +λUmp. (3)

The training scheme is described in Algorithm S1 of the supplementary material. xre is
only used to update the parameters of M. The parameters of Q are updated with D because
Q is a subnetwork of D. Updating M does not change the parameters of Q.

3.4 Theoretical analysis of AGmp

The theoretical analysis of AGmp is presented in Theorem 1.
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Figure 2: Attack accuracies (Av, Ai and Ar) against the vanilla GAN and MP-GAN (λ =
1,10). In all cases, the MP-GAN showed lower attack accuracies than vanilla GANs.

Theorem 1. (Optimal point of AGmp.) For any fixed (D,G), the optimal M to maximize V
is M∗(Q(x)) = qα (x)

qα (x)+qre(x)
, where qα(x) = αqtr(x)+ (1−α)qg(x). The global minimum of

maxM V (M,D,G) is achieved if and only if qre = qα .

Corollary 1.1. When AGgen and AGmp attain equilibrium, the following statement holds:
qre = qtr = qg.

Theorem 1 and Corollary 1.1’s proofs are described in Section S2 of the supplementary
material. Q does not overfit sample-specific features when qre = qtr = qg. Therefore, M is
unaware of the dataset from which the query sample was drawn.

Although Corollary 1.1 does not guarantee that the responses of Xin and Xout are in-
distinguishable because Xout is inaccessible during training, it provides insights into how
the MP-GAN makes the responses of GANs indistinguishable between the unseen and seen
data.

4 Evaluation Results

4.1 Experimental setup

We compared the MP-GAN with DP-based and partition-based GANs on three benchmark
image datasets: MNIST1, Fashion-MNIST2, and CelebA3. We set the size of the member
dataset Xin to 220, 200 for the training dataset Xtr, and 20 for the reference dataset Xre.
Note that such a small dataset causes the models to easily overfit, which is the worst-case
scenario for defense. For a fair comparison, we trained the other GANs, including DP-based
and partition-based GANs, on Xin to ensure that the GANs had equal access to information
during training. The details of DP-based and partition-based GANs are presented in Section
S3 of the supplementary material.

We implemented the GANs with a DCGAN [13] architecture using PyTorch4. To train
the GANs, we used the WGAN loss for MNIST/Fashion-MNIST and WGAN-GP loss for
CelebA. The response network Q is a subnetwork of D, which consists of layers of D from
the first to the third hidden layer; hence, the dimension of the response space Q is identical

1http://yann.lecun.com/exdb/mnist/
2https://github.com/zalandoresearch/fashion-mnist
3http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
4https://pytorch.org/
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Figure 3: Comparative analysis between the vanilla GAN and MP-GAN in terms of the
validity score D(x) (top) and the difference between x and its reconstruction x̂ (bottom).
The target model’s robustness against the MIAs increases as the responses from members xtr
and non-members xte become more indistinguishable.

to that of the activation of the third hidden layer. Section S4 of the supplementary material
presents the details of implementation.

We evaluated the empirical privacy level of the GANs using three MIA attack meth-
ods: validity score-based attack Av, reconstruction-based attack Ar and internal response-
based attack Ai [12]. Av and Ar are state-of-the-art methods proposed to attack GANs (Sec-
tion 2.1). Ai is an attack method proposed against discriminative models, which we applied
to GAN for the first time. More details on the attacks are described in Section S5 of the sup-
plementary material. We evaluated the utility of GANs using a downstream task and trained
the downstream classifier Cd on synthetic samples generated by G and tested them on real
samples. Specifically, we trained a 10-class classifier (ResNet18) that predicted the labels
of MNIST and Fashion-MNIST for the downstream classification task. Such downstream
classifier accuracies can measure the similarities between synthetic samples and real data
distributions.

The GANs were trained for 200 epochs on Fashion-MNIST and MNIST, and for 2,000
epochs on CelebA. All experiments were repeated five times.

4.2 Robustness to MIAs
Fig. 2 shows the MIA accuracies of the validity score-based attack Av, internal response-
based attack Ai, and reconstruction-based attack Ar. Every attack method yields an attack
accuracy of more than 0.5 against the vanilla GAN, which implies that the MIAs against the
vanilla GAN were successful. However, the MIA accuracies for the MP-GAN were lower
than those for the vanilla GAN. Furthermore, a random guess accuracy was observed when
λ = 10, where λ controls the weight of AGmp (Section 3.2). These results demonstrate that
the MP-GAN is robust against MIAs for the appropriate values of λ . We set λ = 10 as the
default value for subsequent experimental results.

Av showed the highest attack accuracy among the three MIAs because D directly ac-
cessed the entire training dataset during GAN training and acquired knowledge based on the
training dataset. Ar showed the lowest attack accuracy because G indirectly accessed the
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Figure 4: Attack accuracies (Av, Ai, and Ar) and downstream classification accuracy (Cd)
of the vanilla GAN, MP-GAN, DP-GAN [17], GS-WGAN [3], privGAN [10], and PAR-
GAN [4] with respect to the training epochs on the MNIST dataset. As the training pro-
gresses, the DP-based and partition-based GANs become more vulnerable to Av, whereas
the MP-GAN remains robust against all attacks.

training data through D, making it difficult for G to memorize the data. Ai and Av are com-
parable because both attacks use D. However, Ai is partially accessible to the knowledge of
D because it extracts this knowledge from the responses to query samples. For Ai to obtain
full knowledge of D, all training samples must be queried, but this only holds true when all
training samples are known to Ai.

Fig. 3 presents the box-plot results of the validity scores D(x) (top) and the distance be-
tween x and its reconstruction x̂ from G (bottom). MIAs manipulate the difference between
the non-member and member data to predict the membership of x. Therefore, the model be-
comes robust to MIAs if trained such that the responses are similar regardless of Xtr and Xte.
According to Fig. 3, compared with the vanilla GAN, the MP-GAN successfully reduces the
gaps between D(xtr) and D(xte) (top), and between dist(xtr, x̂tr) and dist(xte, x̂te) (bottom),
where xte is an unseen sample of MP-GAN during training.

4.3 Utility-privacy trade-off

We compare the empirical privacy level and utility of the vanilla GAN, MP-GAN, DP-
based GANs (DP-GAN [18], GS-WGAN [3]), and partition-based GANs (privGAN [10],
PAR-GAN [4]), which varied as the training progressed on MNIST (Fig. 4). As training
progresses, the utility of GANs for vanilla, DP-based, and partition-based GANs increases;
however, data accumulation in the network makes it vulnerable to attacks. The vulnerabil-
ity level in the MP-GAN is bounded even though utility increases as learning progresses.
When the accuracy of Av is near 0.6 (at the 40-80th epoch), the classification accuracy is less
than 0.4 for all models, except for MP-GAN. When each model reaches the highest classi-
fication accuracy (at the 200th epoch), the accuracy of Av is more than 0.7 for all models,
except for MP-GAN. These results suggest that the MP-GAN outperforms DP-based and
partition-based GANs in terms of empirical privacy-utility trade-off.
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(a) 𝑥𝑡𝑟 (b) 𝑥𝑟𝑒 (c) 𝐺(𝑧)

Figure 5: (a) xtr (raw sample with 3× 3-pixels
white square), (b) xre (raw sample), and (c) G(z)
generated by the MP-GAN.

(a) GAN (b) MP-GAN

Figure 6: Sampled reconstructions x̂tr
from (a) the vanilla GAN and (b) the MP-
GAN on the CelebA dataset.

4.4 The sample-specific features

We demonstrate that the MP-GAN does not learn sample-specific features to improve mem-
bership privacy through experiments on synthetic and authentic face images.

Synthetic image: 3 × 3-white pixels (that is, sample-specific features) were added to the
MNIST training images (Fig. 5(a)). Meanwhile, for Xre, the raw images were used (Fig. 5(b)).
As a result of training the MP-GAN using the above data settings, a white square hardly ap-
peared in G(z) (Fig. 5(c)). In other words, AGmp regularized G to avoid learning the sample-
specific features of Xtr. Note that we added white pixels in this experiment only.

Face image: Fig. 6 depicts x̂tr from the vanilla GAN and MP-GAN on the CelebA
dataset. Compared with the vanilla GAN, the MP-GAN does not learn the sample-specific
features of xtr, such as glasses, wrinkles, and bandanas. Meanwhile, the MP-GAN learns the
overall face shape and gender, which are the features that Xtr and Xre have in common.

4.5 Three-player AGmp vs. two-player AGmp

As described in Section 3.2, α controls how much xg is involved in AGmp. When α = 1.0,
AGmp becomes a two-player game between M and D because M does not receive a response
from xg. As shown in Fig. 7, the accuracy of Cd is the smallest when α = 1.0, indicating
that G does not sufficiently learn the distribution of Xtr. However, the accuracy of Cd is at
its highest when α = 0.25 (three-player game). In the two-player AGmp, the parameters of G
were updated only in AGgen, but in the three-player AGmp, the parameters of G were updated
in both AGmp and AGgen, allowing fast convergence. In the case of α = 0, M only considers
xg without xtr in AGmp; thus, it is more vulnerable to MIA than other values of α .

4.6 Dimension of the response space Q

As shown in Fig. 1, the response space Q is determined as one of the activation spaces of
the hidden layers in D. The dimension of Q, determined by that of the selected hidden layer,
significantly affects AGgen and AGmp, resulting in different model utility and membership
privacy. When Q is located in the front layer (larger dimension), AGgen and AGmp become
challenging to reach equilibrium, and λ determines which AG is affected. For example, when
λ = 1, AGmp was disturbed, resulting in a higher attack accuracies (Fig. 8, left). When λ =
10, AGgen was affected, resulting in a lower accuracy for Cd (Fig. 8, right). Conversely, when
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Figure 7: Attack accuracies (Av, Ai, Ar)
and downstream classification accuracy (Cd)
of the MP-GAN (λ = 10) with respect to α .

Figure 8: Attack accuracies (Av, Ai, Ar)
and downstream classification accuracy (Cd)
of the MP-GAN (λ = 1, 10) with respect to
the position of the hidden layer of D.

Q is located in the later hidden layer (smaller dimension), the accuracy of Cd increases, and
the attack accuracies decrease.

4.7 Additional experimental results

In the supplementary material, we further analyzed the MP-GAN from the following per-
spectives: the impact of Xre (Section S6.1), the impact of |Xre|/|Xtr| (Section S6.2), the prac-
tical dataset size (Section S6.3), the scenario when an attacker can access the layers before
Q (Section S6.4), and computational cost (Section S6.5).

5 Conclusion

We have proposed the MP-GAN, a novel defense against membership inference attacks. The
MP-GAN performs an additional min-max optimization (that is, an AG for membership pri-
vacy) during the training phase to prevent it from overfitting the training samples. During
the AG for membership privacy, G and D are trained to deceive the membership inference
network, whose goal is to determine where the input data are sampled from. We have demon-
strated that MP-GAN offers a better utility-privacy trade-off than existing membership pri-
vacy defense techniques for GANs, even under advantageous scenarios for attackers.
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