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Introduction

Membership inference attack: determines whether a certain 

sample point was included in the victim model’s train dataset.

Problem: Generative adversarial networks (GANs) are 

vulnerable to MIAs [1].

Goal: training GAN which is robust to MIA
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Proposed Method: MP-GAN

Propose: membership privacy-preserving GAN (MP-GAN)

- Three-player game for membership privacy : (𝐺,𝐷) vs. 𝑀

- 𝑀: membership inference network →member / non-member

- 𝑄 𝑥 : response from internal activation of 𝐷

- 𝑋𝑟𝑒: reference dataset (pseudo non-member dataset) 

-

Results: Robustness to MIA

Response member / non-member 

- Top: D(x),  Bottom: dist(𝑥, 𝑥 ̂)

- GAN: distinguishable responses (MIA accuracy ↑)

- MP-GAN: indistinguishable responses (MIA accuracy ↓)

Result: Sample-specific feature

MP-GAN does not learn sample-specific features of the 

training dataset, such as glasses and wrinkles.

Conclusion

We have proposed the MP-GAN, a novel defense against MIAs. We 
have demonstrated that MP-GAN offers a better utility-privacy 
trade-off than existing membership privacy defense techniques. 
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Results: Privacy-utility trade-off

Metric: performance of MIAs (attack), and downstream task (utility)

Trade-off: MP-GAN ↓, others ↑
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