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S1 Algorithm

Algorithm S1 presents the training process of the MP-GAN.

Algorithm S1 Pseudo algorithm of MP-GAN
Input: xtr - training data sample; xre - reference data sample; z - noise sampled from N (0,1);

m - mini-batch size; λ - weight hyper-parameter for Ump(M,D,G);
α - weight hyper-parameter for membership loss of xtr

for # of iterations do
Sample m pairs of (xtr, xre,z)
Update D (including Q) using stochastic gradient descent
∇D

1
m [∑xtr

− logD(xtr) + λα logM(Q(xtr)) + ∑
z
− log(1 − D(G(z))) + λ (1 −

α) logM(Q(G(z)))]
Update M using stochastic gradient descent
∇M − λ

m [∑xtr
α logM(Q(xtr))+∑

z
(1−α) logM(Q(G(z)))+ ∑

xre
log(1−M(Q(xre)))]

Update G using stochastic gradient descent
∇G

1
m [∑z

log(1−D(G(z)))+λ (1−α) logM(Q(G(z)))]

end
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S2 Theoretical analysis for AGmp

S2.1 Proof of Theorem 1
Proof. V (M,D,G) can be expressed as

Ump(M,D,G) =
∫

αqtr(x) logM(Q(x)) +

(1−α)qg(x) logM(Q(x))+qre(x) log(1−M(Q(x))) dx.
(1)

For fixed D and G, the optimal M∗(Q(x)) equals pα (x)
pα (x)+pre(x)

, as function y → a logy +
b log(1 − y) is maximized at a

a+b in [0,1]. Following the proof in the vanilla GAN [6],
Ump(M∗,D,G) = − log4+ 2JSD(qre || qα), where JSD is the Jensen-Shannon divergence,
and its global minimum is achieved if and only if qre = qα .

S2.2 Proof of Corollary 1.1
Proof. At the optimal points, qre = αqtr +(1−α)qg (AGmp), and ptr = pg (AGgen). If the
data distributions are the same (ptr = pg), then the response distributions are also the same
(qtr = qg) because Q is deterministic. Therefore, qre = αqtr +(1−α)qg = qtr = qg.

S3 Summary of GANs

S3.1 DP-based GANs
Differential privacy [4] (DP) aims to bind the influence of a single data point to ensure that
the distribution of the model output is not significantly affected. DP-GAN [13] and GS-
WGAN [2] have been proposed as GANs that guarantee the differential privacy of the gener-
ator. They used the DP mechanism on the discriminator and the post-processing theorem [5]
to make the generator differentially private.

In the main manuscript’s Section 4.3, the privacy budget ε spent for the DP-GAN (at
the 50th epoch) and GS-WGAN (at the 200th epoch) is larger than 1010. The value of ε

is large because the dataset becomes more vulnerable as the dataset size decreases. DP-
based GANs do not provide a meaningful theoretical privacy level, particularly when the
dataset size is small. Even if DP-based GANs do not provide meaningful theoretical privacy
guarantees, they can be used as a practical solution for MIA if the empirical privacy level
is high. Therefore, we measured the performance of DP-based GANs (with a 0.0001 noise
scale) even when ε was large.

S3.2 Partition-based GANs
PAR-GAN [3] and privGAN [10] were proposed to train robust GANs against MIAs without
applying DP. They used multiple discriminators trained on the partitioned training dataset
to improve the generator’s generalization performance. These partition-based GANs are
resistant to MIA against generators but weak against discriminators. Compared with the
vanilla GAN, partition-based GANs train more discriminators with the same amount of data.
Whereas the discriminator of the vanilla GAN learns |Xdata| samples, each discriminator
of the partition-based GAN learns |Xdata|/N samples, where N is the number of partitions.
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Otherwise, the discriminators of partition-based GANs can easily overfit the dataset because
of the small dataset size. The generalized generator of partition-based GANs improves the
generalization performance of the discriminator. However, the results show that the positive
effect does not adequately compensate for the negative effect caused by a smaller dataset be-
cause it regularizes indirectly rather than directly (see Section 4.3 of the main manuscript).

Both privGAN and PAR-GAN randomly split the training dataset Xdata into N disjoint
partitions X1,X2, ...,XN and train N discriminators D1,D2, ...,DN on each partition. The archi-
tecture and training method of the privGAN and PAR-GAN generators differ as follows: The
privGAN has N generators G1,G2, ...,GN and one privacy discriminator Dp that identifies
which Gi generates synthetic data. Each generator Gi is trained using Dp and corresponding
discriminator Di. The PAR-GAN has one generator, which is trained using N discriminators.

S3.3 Comparison to MP-GAN
Table S1 presents the differences between the GANs. Instead of multiple discriminators, the
MP-GAN proposed in this paper consists of one discriminator and a membership inference
network with a relatively small amount of parameters; thus, the number of parameters to
train is less than that of partition-based GANs. In addition, when the discriminators of the
partition-based GAN accessed |Xdata|/N samples, the discriminator of MP-GAN accessed
91% of Xdata excluding the reference dataset, to reduce the possibility of overfitting. Instead
of using the generator to indirectly regularize the discriminators of the partition-based GANs,
MP-GAN regularizes the discriminator directly via an adversarial game with the membership
inference network.

All GANs used the MNIST dataset as the benchmark dataset, and in all cases, except
privGAN, they were implemented based on the DCGAN architecture. We implemented an
MP-GAN based on the DCGAN architecture and evaluated it on the MNIST dataset for
comparison with previous studies.

Table S1: Characteristics of GANs.
Model Dataset size for D Dataset size for G # of parameters Architecture Dataset

DP-GAN [12] |X | |X | |θD|+ |θG| DCGAN MNIST, Fashion-MNIST
GS-WGAN [2] |X | |X | |θD|+ |θG| DCGAN MNIST, Fashion-MNIST
privGAN [10] |X |/N |X |/N N · |θD|+N · |θG|+ |θDp | FCN MNIST, Fashion-MNIST, LFW, CelebA
PAR-GAN [3] |X |/N |X | N · |θD|+ |θG| DCGAN MNIST, CIFAR-10, Hospital, Broward

MP-GAN (proposed) 0.91 · |X | 0.91 · |X | |θD|+ |θG|+ |θM| DCGAN MNIST, Fashion-MNIST, CelebA

S4 Implementation details
We use PyTorch1 to implement the GANs with five hidden convolutional layers (DCGAN
architecture). For M of MP-GAN, we implemented a network of two dense layers. We used
the WGAN loss for MNIST/Fashion-MNIST and WGAN-GP loss for CelebA to train the
GANs. We used the Opacus library2 for the DP-GAN [13]. The Opacus library guarantees
Rényi DP [9]. We implemented the GS-WGAN [2] based on the public implementation3.
We implemented the partition-based GANs and MP-GAN based on the public GAN imple-
mentation4. For partition-based GANs, We limit the number of partitions to two. We trained

1https://pytorch.org/
2https://github.com/pytorch/opacus
3https://github.com/DingfanChen/GS-WGAN
4https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
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GANs using the Adam optimizer [8] (β = 0.5, learning_rate = 0.0002).

S5 Attack details
The validity score-based attack Av [7] employs a pre-trained D as an attacker and predicts
the input query as member data based on the validity score D(x). D(x) reflects the authen-
ticity of the input x from the training data distribution, which can also be considered as a
membership score of x. If D(x) is above a certain threshold, x should be involved in training
the target model. The definition of Av is as follows:

Av(x|D) =

{
x ∈ Xtr if D(x)> εv

x /∈ Xtr else,
(2)

where εv is the attack threshold for Av. This approach assumes an advantageous setting
for the attacker because D can easily overfit the training data because it directly observes
samples of Xtr.

The reconstruction-based attack Ar [1] calculates the distances between the input
query x and its reconstruction x̂ from G. Various approaches can be used to calculate x̂, and
we used an optimization-based white-box approach [1]. The definition of Ar is as follows:

Ar(x|G) =

{
x ∈ Xtr if L(x, x̂)< εr

x /∈ Xtr else,
(3)

where L, x̂, and εr denote the distance metric, the reconstruction of x from G, and the attack
threshold of Ar, respectively. The concept of Ar is that G memorizing Xtr would generate
samples that are similar to the samples of Xtr; hence, the distance between a member sample
and its reconstruction would be smaller than that of a non-member sample. The definition of
x̂ is as follows [1]:

x̂ = G(z∗), where z∗ = argmin
z

L(x,G(z)), (4)

where z ∼Z denotes the input noise. The method for obtaining the optimal z∗ is determined
by the accessibility of G: white-box, partial black-box, or black-box [1]. We assumed the
white-box attack scenario (that is, the parameters of G are accessible) in this study, where
the attacker can reconstruct x̂, which is the most similar to x among the scenarios because
the white-box approach allows for z optimization. Ar can query x and update z by repeatedly
performing gradient descent until convergence. Under a black-box attack scenario, Ar finds
the nearest synthetic samples when randomly generated samples are provided by G [1]. To
match the effectiveness of the white-box MIA, the black-box attacker must obtain all possible
synthetic images from G, which is impossible because Z is infinite. For the reconstruction-
based MIA Ar, an adversary calculates the similarity between G(z) and x using the distance
metric L and aims to find the optimal z∗. We used the Euclidean distance as L, and found z∗

with the RMSprop optimizer 5 (learning_rate = 0.01) for 1,000 iterations. Additionally, we
tested the Learned Perceptual Image Patch Similarity (LPIPS) metric [14] as L; however, we
found that despite the calculation time is increased by approximately four times, LPIPS did
not significantly affect the performance of Ar.

5https://pytorch.org/docs/stable/optim.html
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An internal response-based attack Ai [11] trained the attack model based on the inter-
nal responses of D to the input query. We trained a binary classifier that inputs the internal
responses of D and outputs a membership score.

The member and non-member data were sampled from Xtr and Xte ⊂ Xout to train the
three aforementioned MIA models, where Xte is a disjoint test dataset (that is, Xte ∩Xtr =
/0,Xte ∩Xre = /0). Considering the worst-case scenario for the data holders, we assumed that
the attackers had prior knowledge (that is, the ratio of |Xtr| to |Xte|), which was to their advan-
tage. The attackers used 2N samples, namely N samples from Xtr and N samples from Xte.
Av predicts samples with top-N D(x) as member data and bottom-N D(x) as non-member
data. Ar predicts the membership of x using L(x, x̂); samples with bottom-N L(x, x̂) are re-
garded as members. In practice, without a prior, the attackers must determine εv for Av and
εr for Ar.

S5.1 Choices of attack methods

The attack methods used in prior studies are as follows:

• privGAN: White-box attack against D, Oracle white-box attack against D, and Monte-
Carlo attack against G.

• PAR-GAN: White-box attack against D and Monte-Carlo attack on G.

The reasons for their selection or rejection are as follows:

• White-box attack against D: It is the same as Av.

• Oracle white-box attack against D: It is a variant of Av, but with a lower attack perfor-
mance [10]; hence, we did not consider this method.

• Monte-Carlo attack on G: It assumes a black-box scenario. Instead, we chose Ar,
which is a white-box attack method that is more advantageous to attackers.

These methods have been suggested for GAN attacks. The MIA proposed for the discrim-
inative model can also be used for GAN attacks. The reasons for their selection or rejection
are as follows:

• Attacks using shadow discriminators: Similar to training shadow classifiers in a dis-
criminative model study, shadow discriminators are trained on the shadow datasets,
disjoint to the training dataset. These shadow discriminators cannot provide informa-
tion on member samples. However, D can provide information on member samples
because it has been directly trained on training samples. We believe that the perfor-
mance of Av is the upper bound of attack performance using shadow discriminators.

• Attacks using confidence vector or loss: D outputs a real-valued scalar, and the loss of
D is calculated based on an adversarial game. Hence, we believe that attacks based on
confidence vectors or losses cannot be directly applied to generative models.

• Attacks using internal activation of D: We considered this possible scenario and im-
plemented Ai.
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Figure S1: Attack accuracies (Av,Ai,Ar) on the vanilla GAN and the MP-GAN (λ = 10)
on MNIST and Fashion-MNIST. The number in parentheses means the size of the dataset
used for each GAN training. It can be seen that the 20 data points contribute more in terms
of privacy when used as MP-GAN reference data rather than as training data.

B

Figure S2: AD accuracy with respect to |Xre|/|Xtr|. Xre is used as reference data for MP-
GAN, and additional training samples for the standard GAN (that is, Xtr ∪Xre).

S6 Additional experimental results

S6.1 Impact of Xre

When there is a small dataset, it is confirmed in terms of MIA robustness whether using all
of it for vanilla GAN training or training with the MP-GAN using some as reference data is
better. In the following experiment, we assumed that we obtained an additional 20 samples
corresponding to 10% |Xin| = 200. We compared the utility and privacy of a vanilla GAN
using the 20 data points as additional training data and the MP-GAN using these data as a
reference dataset.

The results are shown in Fig. S1. The numbers in parentheses indicate the training dataset
size used for the corresponding model. The attack accuracy decreased as the number of
training data for the vanilla GAN increased from 200 to 220. However, the attack accuracy
of the MP-GAN was lower in all cases than that of the vanilla GAN. In other words, when
the dataset size is small enough for the model to be vulnerable to MIA, training with the
MP-GAN rather than the vanilla GAN, even with 10% of data, is helpful in terms of privacy.
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Table S2: Attack accuracy Av and FID (lower value is better).

Model FID Av

Vanilla GAN 46.0320 0.75509
MP-GAN 63.0350 0.50920
privGAN 63.0786 0.58609

PAR-GAN 65.8472 0.55518
GS-WGAN 72.3571 0.50127

S6.2 Impact of |Xre|/|Xtr|
In this section, we attempted to determine a suitable value of |Xre|/|Xtr|. Fig. S2 shows that
the discriminator was most robust to AD when |Xre|/|Xtr|= 0.1.

S6.3 Practical dataset size
Since the proposed MP-GAN is a defense method, we demonstrated the defense capability
in a worst-case scenario (small dataset size) for the defender in the main manuscript.

Additionally, we evaluated the accuracy of the validity score-based attack (Av) against
GANs trained on CelebA with 11k samples (larger dataset) and the FID of synthetic samples
(Table S2). These results indicate that the MP-GAN outperforms existing methods in the
empirical privacy-utility trade-off.

S6.4 Scenario when an attacker can access the layers before Q

We measured the Ai accuracy when an attacker can access the layer activations before Q (3rd
layer): 0.505±0.037 with 1st layer and 0.510±0.064 with 2nd layer activations. MP-GAN
remains robust against Ai, and this is because AGmp also affects previous layers.

S6.5 Computational cost
Please refer to the Table S3 below for details of computational cost.

Table S3: Runtime per iteration on an NVIDIA TITAN V GPU and the Intel(R) Xeon(R)
E5-2690 CPU.

GAN MP-GAN privGAN PAR-GAN GS-WGAN

0.3690s 0.9708s 1.4970s 0.6941s 0.7914s
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