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Abstract

Neural Radiance Fields (NeRF) recently emerged as a new paradigm for object repre-
sentation from multi-view (MV) images. Yet, it cannot handle multi-scale (MS) images
and camera pose estimation errors, which generally is the case with multi-view images
captured from a day-to-day commodity camera. Although recently proposed Mip-NeRF
could handle multi-scale imaging problems with NeRF, it cannot handle camera pose es-
timation error. On the other hand, the newly proposed BARF can solve the camera pose
problem with NeRF but fails if the images are multi-scale in nature. This paper presents a
robust multi-scale neural radiance fields representation approach to simultaneously over-
come both real-world imaging issues. Our method handles multi-scale imaging effects
and camera-pose estimation problems with NeRF-inspired approaches by leveraging the
fundamentals of scene rigidity. To reduce unpleasant aliasing artifacts due to multi-scale
images in the ray space, we leverage Mip-NeRF multi-scale representation. For joint es-
timation of robust camera pose, we propose graph-neural network-based multiple motion
averaging in the neural volume rendering framework. We demonstrate, with examples,
that for an accurate neural representation of an object from day-to-day acquired multi-
view images, it is crucial to have precise camera-pose estimates. Without considering
robustness measures in the camera pose estimation, modeling for multi-scale aliasing ar-
tifacts via conical frustum can be counterproductive. We present extensive experiments
on the benchmark datasets to demonstrate that our approach provides better results than
the recent NeRF-inspired approaches for such realistic settings.

1 Introduction
NeRF has emerged as a popular method of choice for object representation from its multi-
view (MV) images [23]. This new 3D representation has shown promising results on several
computer vision, graphics and robotics problems [16, 18, 21, 22, 28, 34, 35]. Yet, it has
some inherent challenges in handling day-to-day captured multi-view images. For instance,
NeRF shows observable artifacts on multiple scale images [5], and its performance degrades
even with subtle inaccuracies in camera pose estimates [20]. Now, most of us might have
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experienced that with everyday commodity cameras, it is challenging, if not impossible, to
acquire an object’s MV images at the same scale and recover correct camera poses using
them simultaneously. On the other hand, popular off-the-self pose solvers such as COLMAP
[27] have limitations in providing accurate camera poses [6, 15], which inherently limits the
broader application of NeRF. Such limitations with NeRF were easily noticeable, leading to
a few recent follow-ups addressing those limitations with NeRF, yet independently.

Concretely, the recently proposed BARF [20], and NeRF– [31] method can overcome the
requirement of correct camera pose for NeRF, assuming that images are captured at equidis-
tant from an object. On a separate line of research—inspired by anti-aliasing techniques
in computer graphics rendering—the newly proposed Mip-NeRF [5] solves the multi-scale
problem with NeRF by leveraging the mipmapping approach to rendering. Yet, it assumes
ground-truth camera poses are known or estimated well via COLMAP. As is known, ground-
truth pose estimation is a challenging task, and a popular framework such as COLMAP has
its challenges in recovering robust camera pose from real-world images [6, 15]. In both of
these groups of independent research, as mentioned above, there exists a gap, i.e., BARF
and similar methods can handle the camera pose problem but cannot handle multi-scale im-
age issue, whereas, Mip-NeRF can handle the multi-scale problem but assumes the correct
camera pose. In this paper, we propose a simple and effective approach that can fill this gap
by utilizing the fundamentals of a rigid scene. Our method jointly addresses the multi-scale
problem, and the robust camera poses estimation requirements with neural volume render-
ing (see Fig.1(a)). Furthermore, our approach comprehensively solves NeRF problems and
eliminates third-party dependencies for pose estimation, hence a self-contained approach.

Meanwhile, we would like to show that Mip-NeRF multi-scale modeling in the ray space
could break down if the camera pose error is not considered. As shown in Fig.1(b), the
correct intersection of the conical frustum that can localize the object is possible only if both
the camera poses are correctly known. One trivial way to handle this is to jointly optimize
for object representation and camera pose as done in BARF [20] and NeRF– [31] but using
Mip-NeRF [5] formulation. However, the bundle-adjustment (BA) based joint optimization
is complex, sub-optimal, requires good initialization, and can handle only certain types of
noise and outlier distribution [6, 25]. And therefore, conditioning the multi-scale rendering
representation based on BA-type complex optimization can complicate the overall approach,
hence not an encouraging take on the problem.

To solve the challenges mentioned above, we resort to fundamentals of scene rigidity
[10]. If the scene is rigid, we can estimate the camera motion robustly without having ex-
plicit information about the object’s 3D position. Accordingly, our proposed method initially
disentangles the camera pose estimation from neural volume rendering to recover a good
pose for joint optimization of the proposed loss function. Our approach uses graph-neural
network-based multiple motion averaging with multi-scale feature modeling for the robust
camera pose to solve the problem. We evaluated our method’s performance on the widely
used benchmark dataset [5, 23], which clearly shows superior results to the competing base-
line methods. In this paper, we make the following contributions.

Contributions
• We propose a method that jointly solves camera pose and multi-scale object representation

for day-to-day captured multi-view images using NeRF based representation.
• Our method uses scene rigidity fundamentals to jointly optimize camera pose and render-

ing loss function. To this end, our approach leverage multi-scale representation [5] and
introduces graph neural network-based multiple motion averaging to learn the noisy cam-
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(a) Input

(a) Left: Result Illustration

(a) Camera pose estimation error leading 
to incorrect localization of object

for multiscale representation. 

(b) Camera pose estimation leading to 
accurate localization of object
for multiscale representation. 

(b) Right: Intuition on camera pose.

Figure 1: Left: (a) Multi-scaled, multi-view images of Lego example with camera pose error is fed to the NeRF
inspired methods [5, 20, 23]. (b) [5] can handle multi-scale imaging effect but fails if camera pose error also
persists. (c) [20] can handle the camera pose error for same scale images but fails for multi-scale input images. (d)
Our approach works for both cases. Right: A visual illustration: (a) Error in the camera pose estimation can lead
to incorrect cones casting in the volume space leading to misguided localization of the object for proper modeling.
(b) Correct camera pose certify the proper modeling of the object volume for each sampled canonical frustum.

era motion estimates from the images. As a result, our approach helps in better estimation
of the network’s model parameters for the multi-scale scene or object representation.

• The proposed method achieves better camera pose estimates and novel view rendering
results than the existing NeRF-based baseline approaches when tested on the standard
benchmark sequence [23] and other popular real-world sequences [17].

2 Background and Preliminaries
Recently, implicit neural representation for object or scene inspired by NeRF [23] has gained
significant attention in the computer vision and graphics community with many extensions
[7]. Consequently, discussing all the NeRF-related methods is beyond the scope of the paper,
and readers may refer to [7, 29] for a quick reference. Nevertheless, to keep the discussion
concise, we discuss the papers directly relevant to our proposed approach.

2.1 Closely Related Work
Lately, NeRF has become a popular method of choice for representing a rigid scene as a
continuous volumetric field parametrized by a multi-layer perceptron (MLP) [23]. Assuming
a calibrated setting with well-posed input images, NeRF for each pixel sample points along
rays that are traced from the camera’s center of projection. Further, these sampled points are
transformed using positional encoding to represent each point in a high-dimensional feature
vector before being fed to an MLP for density and color estimation for novel view synthesis.

(i) Multiscale NeRF. Barron et al. [5] introduced Mip-NeRF to overcome the limitation with
NeRF in rendering multi-resolution images, i.e., multi-view images that are taken at a differ-
ent distance from the object. Instead of sampling points along the rays traced from the cam-
era center of projection, Mip-NeRF queries samples along a conical frustum interval region
approximated using 3D Gaussian to render the corresponding pixel. As alluded to above,
acquisition of images at a perfect scale is unrealistic using day-to-day cameras, and there-
fore, Mip-NeRF broadens the scope of neural volume rendering approaches to commonly
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acquired multi-view and multi-scale image acquisition setup. Yet, Mip-NeRF assumption
on the availability of ground-truth camera pose parameters is rather unrealistic and could
substantially constrain its broader usage.

(ii) Uncalibrated NeRF. Not long ago, few methods have appeared to solve both for cam-
era pose and object 3D representation extending the neural radiance fields formulation. For
instance, BARF [20] leverages photometric BA to jointly register the camera poses and re-
cover object representation. On the other hand, NeRF–[31] solves for both intrinsic and
extrinsic camera calibration while training NeRF model. Nonetheless, these extensions of
NeRF works well only for the same scale images; hence its usage is limited to a synthetic
multi-view dome or hemispherical setup. Other related work includes iNeRF [33] that solves
camera poses given a well-trained NeRF model.

2.2 Camera Pose Estimation

Widely used approaches to camera pose estimation from multi-view images are based on
filtering of image key-points and incrementally solve pose [2] or use global BA [30] that
generally has five-point [24] or eight-point algorithm [14] at the back-end. Yet, we know
that such methods can provide sub-optimal solutions and may not robustly handle outliers
inherent to the unstructured set of images. To address such an intrinsic challenge with pose
estimation, Govindu [9] initiated and later authored/co-authored a series of robust multiple
rotation averaging (MRA) approaches [6, 11]. The benefit of using MRA is that it uses mul-
tiple estimates of noisy relative motion to solve absolute camera pose based on view-graph
representation and rotation group structure [10] i.e., SO(3). Contrary to the conventional
robust rotation averaging approaches [1, 4, 6, 13], in this work, we adhere to recent graph
neural network-based approaches [8, 19, 25, 32] for robust camera pose estimation.

3 Proposed Approach

This paper introduces an approach that unifies two independent research fields in geomet-
ric computer vision and volume rendering for scene representation. Our method exploits
the multi-scale model of Mip-NeRF and composes it with graph-neural network-based ro-
bust motion averaging in a joint optimization cost function. We begin our discussion with
multiscale representation for NeRF followed by robust multiple motion averaging.

(i) Multiscale Representation for NeRF. By leveraging pre-filtering [3] techniques in ren-
dering i.e., tracing a cone instead of ray, Mip-NeRF [5] learns the scene representation by
training a single neural network, which can be queried at arbitrary scales. Further, contrary
to NeRF, which uses point-based sampling along each pixel ray to form their positional en-
coding (PE) feature vector, Mip-NeRF uses the volume of each conical frustum along the
cone to model the integrated positional encoding (IPE) features. The positional encoding
γ(x) (as defined in NeRF [23]) of all the point within the conical frustum is formulated as:

γ
∗(o,d, ṙ, t0, t1) =

∫
γ(x)F(x,o,d, ṙ, t0, t1)dx∫

F(x,o,d, ṙ, t0, t1)dx
(1)

where F is an indicator function regarding whether a point lies inside the frustum in the given
range [t0, t1]. Nevertheless, Eq.(1) is computationally intractable with no closed form solu-
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tion and therefore, it is approximated using multivariate Gaussian which provides “integrated
positional encoding” (IPE) feature[5]1.
(ii) Scene Rigidity and Multiple Motion Averaging. Assume a pin-hole camera model
with known intrinsic calibration matrix K ∈ R3×3 with R ∈ SO(3), t ∈ R3×1 as the rotation
and translation w.r.t reference frame. We can relate ith image pixel x = [ui,vi,1]T to its
corresponding 3D point x = [xi,yi,zi]

T as follows:

[ui,vi,1]T = K[R | t] [xi,yi,zi,1]T (2)

Eq.(2) indicate a non-linear interaction between 3D scene point and camera motion. Yet,
the classical epipolar geometry model suggests that if the scene is rigid x′T E x = 0 must hold
[12], where x′ is the image correspondence of x in the next image frame. It is well-studied
that E can be decomposed into R and t such that E = [t]×R, where E ∈R3×3 is the essential
matrix and [t]× ∈R3×3 is the skew-symmetric matrix representation of the translation vector
[12]. And therefore, we can estimate rigid motion without making use of any actual 3D
observation. Nonetheless, rigid motion solution based on epipolar algebraic relation is not
robust to outliers and may provide unreliable results with more multi-view images [6]. So to
estimate robust camera motion independent of 3D scene point in a computationally efficient
way led to the success of robust motion averaging approaches in geometric computer vision
[1, 6, 10]. Further, given rotations, solving translations generally becomes a linear problem
[6]. Consequently, solution to motion averaging reduces to rotation averaging problem.

3.1 Formulation, Loss Function and Optimization
Let I be the set of multi-view images taken at different distances from the object (see top
left: Fig.2). We aim to simultaneously update the MLP parameterized multi-scale represen-
tation network (θ ) and set of camera poses P , given initial set of noisy estimated pose P̃ . In
probabilistic term, we can formulate it as

θ ,P ∼ Φ(θ ,P|I, P̃) (3)

The above formulation can further be simplified based on the assumption that scene is rigid,
we can optimize for the camera pose without explicit notion of 3d object points in the scene
space. So, we simplified the Eq.(3) as follows:

Φ(θ ,P|I, P̃) =

Multiscale MLP︷ ︸︸ ︷
Φ(θ |I,P) ·

Motion averaging︷ ︸︸ ︷
Φ(P|I, P̃) (4)

Graph Neural Networks for MRA. Assume a directed view-graph G = (V,E) (see Fig.2
bottom left). A vertex V j ∈ V in this view graph corresponds to jth camera absolute rotation
R j and Ei j ∈ E corresponds to the relative orientation R̃i j between view i and j (in Fig.2
represented in quaternions). For our problem, relative orientations which can be noisy are
used for initializing the graph. We aim to recover accurate absolute pose R j and jointly
model the object representation. Conventionally, in the presence of noise, the camera motion
is obtained by solving the following optimization problem to satisfy compatibility criteria.

argmin
{R j}

∑
Ei j∈E

ρ

(
d(R̃i j,R jR−1

i )
)

(5)

1For more details and derivations, kindly refer [5]
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Figure 2: Our method jointly solve poses and learn the multi-scale object representation. The input consists of
multi-scale image set and noisy set of pose. The pipeline consists of a pose-refining network to recover robust pose
and estimate the IPE (Integrated Positional Encoding) by casting well-posed conical frustums through the pixels.
Later, those are fed to the MLP network for learning the object 3D representation. P denotes set of pose.

where, d(.) denotes a suitable metric on SO(3) and ρ(.) is the robust loss function defined
over that metric. Minimizing this cost function ρ(.) in Eq.(5) using conventional method
may not be apt for several types of noise distribution observed in the real-world multi-view
images. Therefore, we adhere to learn the noise distribution from the input data at train time
and infer the noisy pattern to robustly predict absolute rotation. We pre-train graph neural
network in a supervised setting to learn the mapping f that takes noisy relative rotation R̃i j

and predict absolute rotations i.e., {R f
j } := f (R̃i j;Θ), where Θ is the network parameters.

We train to minimize the discrepancy between ground-truth relative rotation Ri j = R jR−1
i

and estimated relative rotations R f
i j = R f

j R−1
i and add an extra regularizer to further learn

one-to-one absolute rotation mapping.

argmin
Θ

∑
G∈D

∑
Ei j∈E

d(R f
i j,Ri j)+β ∑

V j∈V
d(R f

j ,R j) (6)

We fix the reference rotation to be I3×3 identity matrix. The mapping f can now be
optimized accurately [25]2. Thus, our overall loss solves for accurate poses and object rep-
resentation via a joint cost function. Concretely, we combine Eq.(6) (Lmra) with the squared
error between the true C(r) and predicted Ĉ(r) pixel colors (Lrgb).

L=

Lrgb︷ ︸︸ ︷
∑

r∈R
∥C(r)−Ĉ(r)∥2

2+

Lmra︷ ︸︸ ︷
∑

Ei j∈E
dQ(q

f
i j,qi j)+β ∑

V j∈V
dQ(q

f
j ,q j)

(7)

where, dQ = min{||p−q||2, ||p+q||2} measures distance between two quaternion say
p,q. Here, β is a scalar constant. qi j’s symbolizes corresponding quaternion representa-
tion of the rotation matrix defined in Eq.(6). V denotes the vertex set of the view graph
corresponding to the scene being optimized and E denotes the corresponding edge set.

2For more implementation details and view-graph initialization refer supplementary.
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3.1.1 Joint Optimization of Pose and Multi-Scale Image Rendering

Denoting the parameters of the MLP rendering network as θ and the parameters of pose net-
work as Θ, the complete optimization objective is to search for parameters θ and Θ jointly
such that loss L defined in Eq.(7) is minimized. Using gradient based optimization for this
search process requires calculating ∇θL and ∇ΘL. As Lmra is independent of rendering net-
work, we have ∇θL=∇θLrgb. This appears to be similar as previous optimization landscape
for the rendering network, but here the poses would be changing continuously resulting in
different numeric value of the gradient, making the optimization difficult to converge. Now,
for the pose network ∇ΘL will have 2 terms: ∇ΘLrgb and ∇ΘLmra. The second term is easy
to handle given the pose network is able to solve the rotations as shown in [25]. The first term
is something that would entangle the search process for θ and Θ. For better understanding,
let’s assume the loss due to predicted color as Φ(θ ,γ(P)), where P (with slight abuse of
notation) denotes the poses having rotations predicted by the pose network, γ denotes the
positional encoding[26], then the gradient of Φ(θ ,γ(P)) w.r.t the pose network parameters
Θ can be computed using backpropagation as:

∇ΘLrgb =
∂Φ(θ ,γ(P))

∂Θ
=

∂Φ(θ ,γ(P))

∂γ(P)

∂γ(P)

∂P
∂P
∂Θ

(8)

Differentiating this γ function might result in updates favourable to higher frequencies (k) as
pointed out previously in [20], therefore we modify this γ function further to:

γ
∗(x,k) = eg(k)

γ(x) (9)

where g(k) = min( t−k
b ,0), t is annealed from 0 to maximum number of modes and b is a

scalar constant. The term ∇ΘLrgb shown in Eq.(8) results in correlated updates on MLP
network and pose network parameters and can result in a highly non-convex optimization.
To make optimization stable, we use the following weighted loss function:

L= λLmra +(1−λ )Lrgb (10)

where λ is a scalar constant. Fig.(2) provides the overall flow-diagram of our approach.
Optimization Strategy. We begin with a disjoint optimization scheme for poses and struc-
ture, fixing λ = 1 fixed for some initial number of epochs. For this case, Eq.(4) depicts the
modified formulation of the problem statement. After the initial optimization of both the
networks via biased weighting strategy, λ is annealed by using an exponential decay, i.e.,
λ = λ0e−kt where λ0 = 1. This annealing goes till λ = 0.5 and then we fix it at 0.5 for the
remaining optimization process.

4 Experimental Setup, Results and Ablations
Our approach requires optimization of two networks (i) Graph Neural Network (GNN) for
robust rotation averaging optimization based on message passing strategy [8, 25], (ii) Multi-
layer Perceptron (MLP) network optimization for neural multi-scale scene representation.
Our GNN architecture for pose optimization is inspired from Purkait et al. [25] FineNet,
whereas the MLP based rendering network is similar to Mip-NeRF [5]. Implementation
details for reproducibility and hyperparameter values are provided in the supplementary.
Also, pre-training scheme of our GNN, extensive evaluation on pose graphs and robustness
to noisy correspondences are provided in the supplementary.
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Lego Ship Drums Mic Chair Ficus Materials Hotdog
PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

Mip-NeRF 21.52 0.06 24.54 0.07 13.34 0.075 24.71 0.05 29.1 0.049 22.47 0.055 19.7 0.089 27.09 0.053
BARF 10.88 0.55 8.81 0.74 11.56 0.76 12.35 0.57 14.35 0.47 11.88 0.65 12.28 0.61 14.28 0.46
Base A 11.67 0.49 14.28 0.28 13.25 0.67 12.28 0.41 15.12 0.20 12.31 0.25 13.31 0.42 16.17 0.39
Base B 12.46 0.37 13.43 0.31 11.32 0.58 14.26 0.29 13.71 0.42 11.56 0.52 12.22 0.47 15.87 0.42
NeRF– 16.89 0.094 19.89 0.118 15.67 0.074 18.35 0.08 20.22 0.098 14.44 0.13 15.77 0.22 18.69 0.20
Base C 18.28 0.089 16.32 0.22 17.25 0.070 19.42 0.073 18.67 0.114 16.32 0.12 16.58 0.207 17.55 0.223
Ours 27.01 0.044 26.59 0.067 26.07 0.043 32.8 0.008 35.23 0.031 29.28 0.032 24.8 0.061 32.5 0.028

Table 1: Performance comparison with other competing approaches. We used widely used PSNR and LPIPS
performance metric to document the results. Clearly, our method supersede the results of BARF[20], Mip-NeRF[5]
and NeRF–[31] on the multi-scale blender synthetic dataset proposed by [5]. The details of other baselines are
given in Sec. §4. For this experiment, we synthetically perturbed the poses. The results suggest that our approach
can favorably deal with multi-scale and camera pose problem.

Baselines. We compared our method’s performance with the existing methods that either
resolves multi-scale or pose problems with NeRF [23] such as BARF[20], NeRF–[31], and
Mip-NeRF[5]. To further show the effectiveness of our method, we define new baselines.
Our newly defined baseline A (Base A) combines BARF and Mip-NeRF loss. This is done
by making the poses input to the Mip-NeRF trainable and updating the positional encoding
scheme similar to BARF. Next, we define baseline B (Base B) where we first run BARF on
the multi-scale scene and then train the Mip-NeRF model with the output poses. Finally,
we define baseline C (Base C) where we combine Mip-NeRF and NeRF– by just updating
NeRF– with the Mip-NeRF positional encoding scheme. Refer supplementary for further
reasoning behind using these baselines.

4.1 Test sets and Results

To compare our method with the baselines, we used the Blender dataset provided by the
authors of NeRF [23]3 and its multi-scale version provided by Barron et al. [5]. It consists
of single object scenes comprising synthetic objects and corresponding ground truth poses,
with each scene consisting of M = 100 images with 800× 800 resolution. To simulate the
effect of pose estimation errors in real-world datasets, we add noise to the ground truth poses.
More details regarding datasets are provided in the following subsections. Furthermore, we
also test our approach on real-world dataset[17], where COLMAP poses are treated as G.T.,
and show improvements over these roughly accurate poses in the supplementary.

Multi-Scaled Images of Object. We first study the multi-scaled version of the Blender
dataset proposed in the Mip-NeRF. It consists of 400 image scenes generated by scaling
every image in the original Blender dataset to 4 different resolutions. These different resolu-
tion images are synthesized by concatenation of actual resolution images with downsampled
images by a factor of 2, 4, and 8. This scale can also be interpreted as the distance of the
object from the camera. Therefore, it resembles the real-world datasets much more closely
than the original Blender dataset, which contains all the images at the same image resolution
and nearly similar distances. The ground truth extrinsic poses are the same as the original
dataset, but the camera intrinsics are changed according to the image resolution. We per-
turb the poses for every scene by first sampling the noise from a normal distribution δp
∼ N (0,1e−1I), and adding the noise to rotation in its axis-angle form. It is then converted
to the rotation matrix representation and multiplied with the ground truth poses, disturbing
their orientations. We did this purposely to make the dataset resemble real-world settings
closely, thus making it challenging to learn the multi-scale scene representation.
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MipNeRF Ours
PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

Truck 23.1 0.308 0.812 24.7 0.296 0.828
Tank 24.8 0.313 0.823 26.6 0.302 0.851

Table 2: Performance comparison of our approach and Mip-NeRF[5] on the Truck and Tank sequence [17].
The result shows that our method performs better as compared to Mip-NeRF on both the freely moving sequences
demonstrating our method’s advantage. It can be inferred from the above statistics that just relying on COLMAP
poses for solving image based rendering on unconstrained sequence can demonstrably give inferior results. On the
contrary, our approach can handle bad camera poses and provide favorable novel view rendering.

Table (1) provide the results with multi-scale images and pose error as input. The results
are compared using the popular PSNR and LPIPS metric averaged across all the four reso-
lution images. The results show that our method can jointly solve the multi-scale and pose
problems with NeRF and gives results better than other baseline approaches. Fig.(3) provide
the qualitative result comparison for the same.

Tanks and Temples. Tanks and Temples is a well-known challenging dataset containing
real-world scenes [9]. It consists of images showing large scale scenes to simulating the
realistic conditions and largely used for evaluating 3D reconstruction methods. Further,
this dataset can be very useful for testing unconstrained view-synthesis methods. Accord-
ingly, we used couple of sequence to test our method’s performance. Specifically, we used
“truck” and “tank” sequence, which consists of image set containing a 360° view of the
subject captured freely at a varying distance from the object. Since there are no ground-
truth poses provided by the dataset, we used COLMAP[27] to estimate the initial poses and
feed them to our network. Table (2) shows the comparison between our method and Mip-
NeRF[5] for these two sequence. Clearly, our method efficiently optimizes over the poses
esimated by the COLMAP and is able to generate better image renderings when compared
Mip-NeRF+COLMAP setting. For more details regarding initial camera estimation, evalua-
tion details on this dataset and experimental observations, pleae refer supplementary.

Randomly Captured Black-Box Sequence. In Fig.(3), we also introduced a new sequence,
containing randomly captured images of a black box, imitating a general purpose multi-
image acquisition i.e., multi-scale and with non-smooth pose trajectory. Again, we use
COLMAP to estimate the initial poses. From the results, it can be concluded that our ap-
proach clearly outperforms all the existing methods in this realistic scenario due to its robust
pipeline jointly estimating scene and structure. Refer supplementary for more details regard-
ing the images and the COLMAP estimated cameras for this sequence.

4.2 Ablations
(a) Same Scale Images with Pose Error. Similar to the multi-scale case setup as described
in §Sec.4.1, we perturb the pose estimates of the Blender dataset, which contains object
multi-view images captured from the same distance. Table (3) shows the PSNR, LPIPS, and
SSIM results for this setting corresponding to four scenes in the dataset namely Lego, ship,
drums and mic. The performance confirms that our method more often than not supersedes
the baselines results with similar scale images. This is expected as BARF [20] was designed
to handle pose for images taken at same distant from the object.
(b) Unbiased Optimization of Eq. (10) (λ = 0.5). To better understand the behaviour of
our joint optimization and utility of our annealing strategy, we conducted this experiment.
By setting λ = 0.5 in Eq.(10), we assign equal weight to color rendering cost (Lrgb) and
robust MRA loss (Lmra) loss during optimization. Table (4) shows a comparison of this
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Figure 3: Qualitative Comparison of our method, Mip-NeRF[5] and BARF[20] on the multi-scale of blender
dataset with synthetically added pose errors. We have visualized the synthesized images from all the approaches on
3 scenes namely Mic, Drums, Lego and our real sequence. Our method clearly provide better synthesized images.

Lego Ship Drums Mic
PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM

Mip-NeRF 17.90 0.089 0.82 22.90 0.107 0.71 14.07 0.11 0.799 21.90 0.064 0.93
BARF 27.61 0.05 0.92 26.18 0.121 0.74 23.68 0.095 0.88 27.03 0.06 0.96

RM-NeRF(ours) 27.10 0.048 0.92 25.45 0.0690 0.735 24.98 0.072 0.907 30.03 0.027 0.963
Table 3: PSNR, LPIPS and SSIM comparison of our method with BARF[20] and Mip-NeRF[5] on Blender
dataset[23] with synthetically introduced pose errors.

Lego Ship Drums Mic
PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM

RM-NeRF(ours†) 22.20 0.067 0.87 23.34 0.071 0.71 15.07 0.079 0.789 22.60 0.049 0.92
RM-NeRF(ours) 27.01 0.044 0.92 26.59 0.067 0.74 26.07 0.043 0.92 32.8 0.008 0.97

Table 4: Comparison of our proposed optimization method (ours) with its variant (ours†) where we fix λ = 0.5
on Mulit-scale Blender dataset with introduced pose errors.

method with our optimization method on the 4 scenes of the multi-scale blender dataset with
synthetic noise. The statistics indicate that utilizing the rigid scene prior during optimization
helps. Furthermore, in supplementary, we perform another ablation where we compare all
the methods on the Multi-scale Blender dataset using the available ground truth poses.

5 Conclusion and Future Direction
We introduced an approach that enhances the use of neural radiance fields representation to
general daily acquired multi-view images, where multi-scale images and camera pose errors
are inevitable. By unifying the concepts from multi-view geometry in computer vision,
multi-scale NeRF, and graph neural networks, we propose a method that can robustly solve
multi-scale image rendering issues in continuous volume rendering. Of course, the proposed
method is not a perfect solution to the problem; however, it suggests an important area for
research that could enable continuous neural volume rendering to daily acquired multi-view
images. A straightforward future direction is to extend the proposed approach for jointly
estimating the camera intrinsics and the extrinsic for multi-scale neural scene representation.
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