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Abstract

This draft contains more experimental analysis and details relevant to the work pre-
sented in the main paper. Firstly, we demonstrate our approach’s applicability to the
challenging realistic case. To this end, we show our method’s performance on the popu-
lar Tank and Temples dataset [9], as well as on our sequence taken from a regular freely
moving camera. Next, we discuss the inner working of multiple rotation averaging via
the modern graph neural network framework and extensively evaluate our graph neural
network on pose-graphs by considering different scenarios of inducing noise. Later, ad-
ditional details and results on our joint optimization, along with the analysis of error in
predicting poses, are presented to better understand our take on the problem. Finally, we
provide all the implementational details related to network architecture, hyperparameters
to reproduce our results and some discussion on baselines used to prove the effectiveness
of our method.

A Results on Challenging Real-World Sequence

A.1 Tank and Temples

Tanks and Temples is a well-known challenging dataset containing real-world scenes [9].
It consists of images showing large scale scenes to simulating the realistic conditions and
largely used for evaluating 3D reconstruction methods. Further, this dataset can be very
useful for testing unconstrained view-synthesis methods. Accordingly, we used couple of
sequence to test our method’s performance.

Specifically, we used “truck” and “tank” sequence, which consists of image set contain-
ing a 360° view of the subject captured freely at a varying distance from the object. Since
there are no ground-truth poses provided by the dataset, we used COLMAP[14] to estimate
the initial poses and feed them to our network (see Fig.1). Table (1) shows the comparison
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MipNeRF Ours
PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

Truck 23.1 0.308 0.812 24.7 0.296 0.828
Tank 24.8 0.313 0.823 26.6 0.302 0.851

Table 1: Performance comparison of our approach and Mip-NeRF[2] on the Truck and Tank sequence [9]. The
result shows that our method performs better as compared to Mip-NeRF on both the freely moving sequences
demonstrating our method’s advantage. It can be inferred from the above statistics that just relying on COLMAP
poses for solving image based rendering on unconstrained sequence can demonstrably give inferior results. On the
other hand, our joint optimization can handle outlier camera pose and provide favorable novel view rendering at the
same time.

between our method and Mip-NeRF[2] for these two sequence. Clearly, our method effi-
ciently optimizes over the poses esimated by the COLMAP and is able to generate better
image renderings when compared Mip-NeRF+COLMAP setting. For qualitative analysis,
we also provide visual comparison of the synthesized novel views on the truck sequence in
Fig.6. Observation: (a) The experimental result shows that our method can further enhance
and broaden the scope of multi-scale neural radiance field modeling so that its theory can be
successfully applied in an unconstrained environment without using geometric 3D scaffold
as an input prior for the image rendering [13]. (b) Relying on only COLMAP poses [14]
may provide good results on synthetic scene or a well controlled sequence. But for a general
real-world video sequence, it may provide erroneous camera poses thereby leading to infe-
rior results. Hence, our joint formulation provide robustness to pose at the same time gives
better multi-scale image rendering.

Figure 1: The camera pose trajectory recovered using COLMAP [14] on the truck sequence [9]. The video
sequence consists of 251 poses taken freely with overall view of the truck.

A.2 Our dataset taken from a freely moving camera

To further investigate the real world use case of our approach, we test our proposed algorithm
on a video taken from a freely moving camera. It contains the images of a black box taken
by randomly moving camera around it. This image set mimics both pose and scale issues
similar to any randomly collected set of day-to-day multi-view images. Figure 3 shows a
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(e) Mip-NeRF [2] (f) Ours

Figure 2: Visual result comparison our method (right) with Mip-NeRF (left) on the Truck sequence [9]. The
initial camera poses are generated using COLMAP [14]. As evident from these results, our method performs better
than Mip-NeRF [2] on this challenging real-world sequence.

subset of the image set and Figure 4 (left part) shows approximate camera pose recovered
using COLMAP[14].

Generating initial poses. We use COLMAP[14] for the initial keypoint detection and fea-
ture matching which is then used for predicting initial relative camera pose. It is well known
that matching keypoints between any image pair results in multiple proposals for relative ori-
entation between them, out of which some can be incorrect whereas other can be accurate.
We used this pose prior to initialize our pose-graph network. Contrary to Mip-NeRF [2], our
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Figure 3: Images corresponding to our black box dataset taken using freely moving camera in an unconstrained
manner (discussed in Sec. §A.2). We imitated a very general case of day-to-day captured multi-view images taken
at different distance from the object with camera jittering effects as well.

method can take care of bad camera pose priors via rotation averaging and simultaneously
optimize for multi-scale rendering.

Experimental Analysis. Figure 4 shows the reconstructed box obtained by using our pro-
posed algorithm. It is apparent from this figure that our algorithm can infer accurate image-
based rendering of the scene (novel synthesized view) despite having uncertain poses and
images taken freely at arbitrary scales. Again the experimental results endorses the previ-
ously outlined observation , our method can be successfully provide better results for image
based rendering as compared to Mip-NeRF [2] in an unconstrained environment without
using geometric 3D scaffold as an input prior for the scene [13].

       COLMAP                              Mip-NeRF                                  Ours

Figure 4: Left:: Approximate camera pose recovered using COLMAP[14] (described in Sec. §A.2). The camera
poses are plotted to show the randomness in the camera motion estimated using COLMAP. Hence, using it blindly
make the framework prone to high pose errors. Mid : Rendered images using Mip-NeRF. Right : Rendered images
using our algorithm on this dataset showing the applicability of our method on day-to-day video sequence.
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Figure 5: An example view graph extracted form the input poses. The vertex set V j of this viewgraph
correspond to initial absolute orientation of each of the images and the edge set Ei j correspond to the
relative orientations between the image pairs.

B Graph Neural Networks for MRA
Here, we discuss in details the working of our pose network performing multiple rotation
averaging (MRA) based on message passing graph neural networks (GNNs). We first dis-
cuss the working of Message Passing Networks(MPNN) involving communication between
a graph node and its neighbours.
(i) Message Passing Scheme. Given a directed view-graph G (see fig. 5) with N cameras
and M pairwise relative orientation, we used the message passing neural network approach
to operate on it. Let m(t)

j be the message functions that correspond to the message from the

neighboring nodes u ∈ N j, ψ(t) as the update functions (T layers), and h(t−1)
j the state of

node j at time step (t −1). The feature node state h(t)j at time t in the graph is updated as:

h(t)j = ψ
(t)(h(t−1)

j ,m(t)
j

)
(1)

ψ(t) corresponds to concatenation operation followed by a 1D convolution and ReLUs. The
message function condensed message m(t)

j at node j due to all neighbor N j is expressed as

m(t)
j = ΩVi∈N j h

(t)
i−→ j (2)

Here, Ω(.) denotes a differentiable function like the softmax activation function, . , h(t)i−→ j :=

Ψ(t)(h(t−1)
j ,h(t−1)

i ,ei j) is the accumulated message for the edge Ei j at t. Ψ(t) is concatenation
operations followed by 1D convolution and ReLU activation. For our problem, N j is the set
of all neighboring cameras connected to V j and ei j is the edge feature of the edge Ei j. For
more details refer [4, 12]
(ii) Robustifying Poses using GNN. The GNNs pipeline for estimating robust pose consists
of three major steps: (a) Cleaning the view-graph. We first estimate the relative rotations
R̃i j from the noisy rotations Ri due to input data. Next, we apply cycle consistency check
to remove the outliers [1, 6]. Local cyclic graph structure of the view-graph along a cycle
from an orientation close to identity and indicates the presence of outlier in the cycle. (b)
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Generating a noisy initial solution using the extracted relative rotations. For this, we build a
minimum spanning tree (MST) using all the nodes in the viewgraph by fixing the root to be
the node with maximum neighbours (greatest fan-out). Then, we generate an initial absolute
rotation R̂i for each node by propagating from the root to that node along the tree. (c) Refining
the initial solution using Graph Neural Networks. For applying GNNs, we require features
corresponding to each node in a view graph. We use the rotation matrix in the initial solution
corresponding to every node in the graph as its input feature. Furthermore, we also pass
the observed relative rotations R̃i j as edge features to the GNN following the formulation
described in the previous paragraph. Also, instead of directly passing these relative rotations
as edge features, we instead pass the discrepancy between these observed relative rotations
and the initial solution resulting in the the edge feature euv = R̂v

−1R̃uvR̂u, to the GNN.
The resultant input view graph then becomes G = {R̂i,ei j} and the supervised problem

becomes R f
j := f ({R̂i,ei j};Θ) trained using the rotation averaging loss function. Moreover,

we know that relative rotation between any 2 nodes in the viewgraph is invariant to any
constant angular deviation in form of rotation matrix R to both the nodes and thus, both the
solution sets {RiR,R jR} and {Ri,R j} result in the same discrepancy when using the rotation
averaging loss function. To handle this issue involving an unknown global ambiguity in the
rotations, we also include a regularizer as a discrepancy between the absolute rotations in the
objective. This results in the aggregate loss function described in Sec. §3.2.1:

L= ∑
G∈D

∑
Ei j∈E

dQ(q
f
i j,qi j)+β ∑

V j∈V
dQ(q

f
j ,q j) (3)

Given the formulation and pipeline of our pose-refining method, we now analyse its
performance separately from the complete reconstruction pipeline, to further demonstrate its
effectiveness in resolving errors in the input rotations.

B.1 Experiments and Analysis

B.1.1 Synthetic View Graphs

As discussed in the main paper, our pose network is pre-trained by using supervision from
1200 synthetic viewgraphs proposed by Purkait et al. [12]. This dataset consists of both
outliers (fraction varying between 0 and 0.3) and noisy rotations where noise is sampled
from a normal distribution with std. uniformly varying between 5°and 30°. We train our
model on 80% of the viewgraphs and remaining are used for testing. The mean and median
values resulting from evaluating our trained pose robustifying network on this dataset are as
follows:

number of examples mean error median error
120 2.09° 1.1°

Such statistics shows that our approach is effective in reducing the overall camera motion
error, which otherwise could directly affect the structure estimation leading to inferior 3D
reconstruction result. Next, we study the performance of our method on the pose estimation
when tested on Blender Synthetic Dataset.
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Scene Noisy Rotation (°) Improved Rotation (°)
mean rms mean rms

Lego 1.78 4.24 0.031 0.041
Ship 2.12 4.02 0.052 0.063

Drums 1.98 3.65 0.038 0.052
Mic 2.36 5.12 0.073 0.091

Chair 1.76 3.45 0.056 0.071
Ficus 2.46 5.34 0.065 0.096

Materials 1.58 3.55 0.046 0.074
Hotdog 2.23 4.78 0.052 0.071

Table 2: The performance of our MRA pose-network pipeline on the view-graphs generated from the poses
available in the Blender Synthetic Dataset[11]. For this experiment, we perturb the poses using the method described
in the paper. The results show the performance for both the cases , before and after applying our MRA pose network.

Scene MipNeRF[2] Ours
PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

Chair 28.7 0.054 0.95 33.7 0.035 0.97
Ficus 23.91 0.059 0.91 28.6 0.041 0.93
Mat. 14.2 0.103 0.78 25.1 0.067 0.89

Hotdog 23.81 0.063 0.90 33.1 0.031 0.95.
Table 3: Experiments on the remaining scenes of the Blender dataset. Synthetic errors, as described in the paper,
are introduced in the poses for this experiment. These results further verify the improved performance resulting from
evaluating our algorithm against the baseline Mip-NeRF[2], in presence of synthetically introduced pose errors and
scale issues in the dataset.

B.1.2 Blender Pose Graphs

We tested our trained pose network using the Blender synthetic dataset to generate the pose-
graph. For this experiment, we introduced noise to 20% of the camera poses obtained from
Blender synthetic dataset. We used these noisy poses to construct the input view-graph for
our trained pose network. Table 2 shows the results before and after applying our pose
method. The results demonstrate the robustness of our approach in pose estimation. Our
method can handle noise in the view-graph and reduce the mean error favorably, thus mini-
mizing the impact of noise in the poses.

B.1.3 Pose comparison with COLMAP [14] on Noisy Correspondence

Of course, we can have good image correspondences for a high-quality rendered image se-
quence; however, real world images can be noisy affecting the correspondence match leading
to a bad pose estimate using frameworks like COLMAP [5, 7]. Hence, we conducted an ex-
periment to show the robustness of our approach. Here, we used the Lego dataset to generate
viewgraph by adding noise to the matched correspondences. Image correspondences were
used to estimate pairwise relative rotations. Using it, we estimate the absolute rotations from
these noisy relative rotations using (a) COLMAP and (b) our pose network. The pose differ-
ence for both of these cases is shown in Fig.(6). The difference in the recovered pose shows
(using line) the effectiveness of our approach in handling pose errors. Our approach gives
better results compared to COLMAP and the recovered pose is consistently better across
images.

C Additional Results
Here, we discuss the result comparison with Mip-NeRF [2] for remaining scenes from the
Blender Dataset (not provided in the main paper). Table 3 contains results for the remaining
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Figure 6: Comparison of camera pose predicted by COLMAP [14] and our methods on Lego dataset, when
noise is added to the pairwise matched correspondences. Left: Estimated camera pose from COLMAP[14] and the
ground truth pose trajectory with the red line representing the pose difference. Right: Our recovered camera pose
plotted against the ground-truth poses. It is easy to infer that our approach has better pose estimate. (Red line shows
pose error).

cases under single scale settings. Similar to the main paper, ground truth poses are perturbed
to account for noise. The statistics indicate that our method provides better results than the
Mip-NeRF and showing a substantial improvement on the remaining 4 scenes.

After evaluating both Mip-NeRF[2] and our method on 16 different scenes (8 multi-
scale and 8 single scale) corresponding to the Blender Synthetic dataset, it seems evident
that correct poses plays a significant role when integrating multi-scale modeling with NeRF
[11]. Thus, it becomes necessary, if not compulsory, for multi-scale neural radiance field
modeling to inherit robust pose optimization formulation for better scene representation. To
further support our case, we provided a supplementary video for convincing comparison.
Next, we provide additional details on the joint optimization of our propose loss function.

C.1 Joint optimization of our loss function with λ = 0.5

To understand the relation between rendering cost function and pose cost function optimiza-
tion, we study the our overall loss function, when equal weights are assigned to both the
terms of Eq.(10) in the main paper , λ = 0.5. We recorded its performance for both sin-
gle and multi-scale image case as described in the main paper. Additionally, we noted our
method’s pose error performance in the predicted rotation matrices.

Table 4 provide the results of this study using pose error metric and image rendering
metric (PSNR, LPIPS). As discussed in the paper, these results demonstrate the difficulty in
jointly optimizing the pose network and rendering network parameters. This is due to the
highly non-linear nature of the joint optimization problem. Hence, our approach of biasing
the λ over iteration gives a better way to optimize the proposed loss function than hard
coding it.

C.2 Multi Scale Images with Ground-Truth Pose
We further analyze the multi-scale case using the multi-scale Blender dataset, but this time
without perturbing the ground truth poses. Table (5) compares the PSNR, LPIPS and SSIM
values for this case. Once again, our method performance is similar to the current baselines,
and the difference to the best method [2] is minor, thereby showing the effectiveness of our
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Scene Mean Error (°) Single-Scale Dataset Multi-scale Dataset
Single Multi Ours PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

Lego 0.73 0.86 0.03 24.02(27.10) 0.08(0.05) 22.20(27.01) 0.06(0.04)
Ship 0.58 0.74 0.05 23.78(25.45) 0.10(0.07) 23.34(26.59) 0.07(0.07)

Drums 0.76 0.83 0.03 20.2(24.98) 0.08(0.07) 15.62(26.07) 0.07(0.04)
Mic 0.38 0.42 0.07 24.2(30.03) 0.06(0.03) 22.60(30.08) 0.04(0.01)

Chair 0.41 0.47 0.06 27.40(33.70) 0.03(0.05) 25.70(35.23) 0.07(0.03)
Ficus 0.67 0.78 0.07 24.22(28.60) 0.07(0.04) 22.70(29.28) 0.07(0.03)

Materials 0.85 1.12 0.05 20.26(25.10) 0.07(0.07) 18.83(24.80) 0.09(0.06)
Hotdog 0.51 0.62 0.05 26.56(33.10) 0.06(0.03) 23.31(32.50) 0.08(0.03).

Table 4: Performance of the joint optimization with λ = 0.5 in Eq.(10) of the main paper. We recorded the pose
estimation error and image rendering accuracy on both single scale and multi-scale Blender dataset. For pose-error
mean angular error (in degrees) across all the rotations, are tabulated. As a reference to show the degradation of
the performance, we have added the mean angular error in rotations using our approach for joint optimization, for
the single scale case. The table also provides PSNR and LPIPS image rendering accuracy metric results for better
understanding. The bracket values for the PSNR and LPIPS denote our method’s result as proposed in the
main paper.

approach. The point to note is, using our method, we don’t have to rely on a separate module
for estimating accurate pose and it is recovered jointly with the object’s neural representation.

Lego Ship Drums Mic
PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

Mip-NeRF 29.34 0.045 0.938 28.64 0.0651 0.778 26.9 0.0452 0.92 34.7 0.0088 0.978
BARF 11.18 0.52 0.70 9.23 0.76 0.48 11.2 0.68 0.66 12.18 0.53 0.74

RM-NeRF(ours) 29.30 0.045 0.929 28.57 0.0653 0.778 26.7 0.0455 0.93 34.3 0.0082 0.969
Table 5: Comparison of the 3 metrics: PSNR, LPIPS and SSIM, resulting from the evaluation of our proposed
RM-NeRF, BARF[10] and Mip-NeRF[2] on 4 scenes of the multi-scale blender dataset with ground truth poses.

D Implementational Details
Our approach requires optimization of two networks (i) Graph Neural Network (GNN) for
robust rotation averaging optimization based on message passing strategy [4, 12], (ii) Multi-
layer Perceptron (MLP) network optimization for neural multi-scale scene representation.
Our GNN architecture for pose optimization is inspired from Purkait et al. [12] FineNet,
whereas the MLP based rendering network is similar to Mip-NeRF [2]. We train the GNN
pose-network in a supervised setting using 1200 synthetic view-graphs proposed by Purkait
et al. [12] as described in Sec.(B.1). Later, we use the pre-trained pose network for our
overall optimization. We implemented our approach using JAX [3] and simulated our code
on a 32 GB Nvidia V100 GPU computing machine. First, we train the pose network for
250 epochs with the learning rate 5× 10−5 and a weight decay of 10−4. To overcome the
overfitting problem, we drop a fraction of edges (0.25) in the view-graph input to the pose
network. The β parameter in Eq. (7) loss function, in the main paper, is set to 0.1 at train
time. Also, the value of parameter b used in Eq. (9) is kept fixed at 10. The MLP model for
learning the multi-scale scene representation is trained for 100k iterations for every scene
using the Adam optimizer [8] with a batch size of 4096 rays and a learning rate varying log-
arithmically from 5×10−4 to 5×10−5. Similar to [2], we use “coarse" and “fine" sampling
schemes with 128 samples for rendering.
Baselines. As discussed in the main paper, we have defined three new baselines to test
against our method. These baselines are based on combining the methods that are capable
to solve pose errors and multi-scale issues separately. The first baseline (Base A) involves
directly combining the Mip-NeRF [2] multi-scale modelling with the encoding scheme pre-
sented in BARF [10] along with updating the input poses by making them trainable. This
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is based on the simple intuition that as both are working individually for different use-cases
(pose error and multi-scale issues), combining them should also work. Given this fails to
work, can be observed from the results in Table (1) of the paper, we also use another base-
line where we first run BARF [10] on the multi-scale setting with varying resolution and
then run Mip-NeRF [2] on the poses recovered from it (Base B). The failure of this baseline
(refer Table (3) in the paper) along with previous baseline (Base A), points to the fact that
BARF [10] is not able to estimate the correct poses in the multi-scale setting. Even if any
kind of annealing is used to combine both, then also the resultant baseline is expected to fail
as the object would be incorrectly localized by BARF and therefore, even multi-scale mod-
eling would be of no use. Next, to further deal with this changing focal length problem, we
further define new baseline (Base C), where we combine Mip-NeRF [2] with NeRF– [15] by
just updating the NeRF– [15] with the Mip-NeRF [2] positional Integrated Positional Encod-
ing(IPE) scheme. It also fails in localizing the object correctly, again can be observed from
Table (1) in the paper. The failure of all these three baselines to deal with both pose and
multi-scale issues simultaneously proves the importance of our approach i.e. even though
independently both the issues (multi-scale problems and pose errors) can be dealt efficiently
with existing algorithms, it is not straightforward to solve them simultaneously.
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