SVL-Adapter: Self-Supervised Adapter for Vision-Language Pretrained Models

Omiros Pantazis¹

Gabriel Brostow¹ Kate Jones¹ Oisin Mac Aodha^{2,3}

Motivation

Jointly Learning from Vision & Language

Hundreds of millions image/text pairs available on the web

Vision-Language methods like CLIP exhibit impressive zero- and low-shot transfer

Pitfalls of Vision-Language Transfer

Few-shot learning on top of Vision-Language learnt features not enough if downstream task diverges from internet-style

Proposition

Utilize datasets that differ from the content found online to test the limits of Vision-Language adaptation

Assist Adaptation by combining Large-Scale Vision-Language Pretraining and Targeted Self-Supervised Learning

Method: SVL-Adapter

Self-Supervised Learning for Pretraining

We deploy a Self-Supervised Learning approach such as SimCLR to learn representations relevant to the downstream task

Downstream Adaptation and Fusion with CLIP

- Given few-shots, train an adapter on top of Self-Supervised features
- Combine classfication outputs of the trained adapter with zero-shot CLIP
- We show how the blending hyperparameter that optimally fuses the two outputs can be selected automatically (SVL-Adapter*)
- Zero-shot version of SVL-Adapter where CLIP pseudolabels are utilized as few-shot examples

Evaluation

Testbed: Real-World Challenging Datasets

- We evaluate our approach in 10 Standard and 6 Challenging datasets
- We compare with zero-shot and linear probe CLIP and state-of-the-art Vision-Language adaptation baselines

Results

SVL-Adapter outperforms baselines with significant gains in the Challenging tasks

- SVL-Adapter consistently better than baselines, while SVL-Adapter* follows closely
- Significant gains of about 10% on average on challenging tasks
- Zero-shot version of SVL-Adapter improves considerably upon zero-shot CLIP predictions

Summary

- Applying Vision-Language adaptation is not straightforward in challenging real-world datasets
- SVL-Adapter: a way to combine large-scale Vision-Language pretraining and targeted Self-Supervised Learning
- Outperforming baselines on zero- and low-shot learning, with significant gains in challenging tasks

More results available in our paper!