SVL-Adapter: Self-Supervised Adapter
for Vision-Language Pretrained Models

Omiros Pantazis’ Gabriel Brostow' Kate Jones' Oisin Mac Aodha*”

Motivation

Jointly Learning from Vision & Language Self-Supervised Learning for Pretraining
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Radford et al., 2021

We deploy a Self-Supervised Learning approach such as SImCLR to

Hundreds of millions image/text Vision-Language methods like CLIP exhibit |
learn representations relevant to the downstream task

pairs available on the web impressive zero- and low-shot transfer

Pitfalls of Vision-Language Transfer Downstream Adaptation and Fusion with CLIP

Few-shot
examples
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- Given few-shots, train an adapter on top of Self-Supervised features

- Combine classfication outputs of the trained adapter with zero-shot CLIP
- We show how the blending hyperparameter that optimally fuses the two
outputs can be selected automatically (SVL-Adapter®)

- Zero-shot version of SVL-Adapter where CLIP pseudolabels are utilized
as few-shot examples

Few-shot learning on top of Vision-Language learnt features not enough
if downstream task diverges from internet-style

Proposition Evaluation

Utilize datasets that differ from the content found online to

test the limits of Vision-Language adaptation Testbed: Real-World Challenging Datasets
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Assist Adaptation by combining Large-Scale Vision-Language
Pretraining and Targeted Self-Supervised Learning

- We evaluate our approach in 10 Standard and 6 Challenging datasets
- We compare with zero-shot and linear probe CLIP and state-of-the-art
Vision-Language adaptation baselines
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Results

SVL-Adapter outperforms baselines with significant gains Summary
in the Challenging tasks

- Applying Vision-Language adaptation is not straightforward in
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- SVL-Adapter consistently better than baselines, while SVL-Adapter® follows closely
- Significant gains of about 10% on average on challenging tasks
- Zero-shot version of SVL-Adapter improves considerably upon zero-shot CLIP predictions More results available in our paper!




