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A Additional Results

Here we present additional results from experiments and ablation studies that highlight the
performance gains and the consistency of SVL-Adapter. We maintain the categorisation of
datasets, i.e. “Standard” and “Challenging”, as defined in the main paper.

A.1 Better self-supervised features improve adaptation performance

In Figs. 3 and 4 of the main paper, we see how the vanilla version of SimCLR [3] can help
CLIP adapt especially across challenging downstream tasks. Additionally, to support the
assumption that the developments in self-supervised learning are orthogonal to our approach,
we exploit the metadata that are typically available for real-world tasks to formulate a self-
supervised task that uses more informative positive pairs instead of self-augmentations as
suggested in [8]. Specifically, for the four camera trap datasets [1, 2, 8, 10], we perform self-
supervised training with context-informed positives and observe significant improvements
in both zero- and low-shot classification when the features are exploited by our suggested
SVL-Adapter* and SVL-Adapter respectively (Fig. A1). From the results in Fig. A1 we see
that the inclusion of context-informed positives instead of self-augmentations during the self-
supervised tasks can lead to improvements in both zero-shot and low-shot learning by our
proposed SVL-Adapter* and SVL-Adapter approaches. In addition, we show that a simple
Triplet loss can replace SimCLR and remain effective on adaptation (see Table A1).
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Figure A1: By using a better self-supervised task (“Context Positives” from [8]) to encode
features with Es, we achieve consistent gains in zero- and low-shot classification across the
four camera trap datasets for both SVL-Adapter and SVL-Adapter*.

A.2 Better CLIP models translate to better performance
The experiments in the main paper use ResNet50 [6] as the backbone architecture for both
CLIP and the self-supervised feature encoder component of SVL-Adapter. Given that the
adapter module As is expecting the output of the pretrained self-supervised feature encoder
Es we understand than increasing the capacity of its backbone model would make the ap-
proach less computationally efficient. However, we experiment with the size of the frozen
CLIP Encoder given that it is only used for inference and thus it would not be prohibitive
for practitioners, even those with limited resources. Specifically, we replace the ResNet50
CLIP with a ViT/L-14, a large vision transformer [4], i.e. CLIP’s best performing variant
according to [9]. As expected, in Fig. A2 we observe that the improvements in the CLIP
backbone are also reflected in the SVL-Adapter combining them with the adapter features
both across “Standard” and “Challenging” tasks.
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Figure A2: Low-shot evaluation of SVL-Adapter and SVL-Adapter* fused with Zero-shot
CLIP with a ResNet50 backbone as in the main paper versus Zero-shot CLIP with a more
advanced large visual transformer. We observe significant gains when fusing the logits that
come out of the adapter with a more advanced Zero-shot model (Purple) both in “Standard”
and “Challenging” tasks.

A.3 SSL features alone are not very effective
Even though in the main paper we showed the advantage of using a fusion of adapted self-
supervised features and the impressive outputs of Zero-shot CLIP by comparing to existing
baselines, we have not compared SVL-Adapter with a variant that only relies on the visual
adaptation of the self-supervised features. Here, we compare SVL-Adapter with the adapta-
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tion of the SSL features using a similar adapter module but without the blending component
in order to understand the necessity of including the CLIP component as described in Eqn. 3
and Sec. 3.2.1 of the main paper. As we see in Fig. A3, SVL-Adapter and SVL-Adapter*
outperform Zero-shot CLIP and the independently adapted self-supervised features (Sim-
CLR MLP) on average; thus, a combination, similar to the one proposed with SVL-Adapter
in Eqn. 3 in the main paper, should always be preferred as a universal solution.
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Figure A3: Here we compare Zero-shot CLIP and adapted self-supervised features (Brown)
with our suggested SVL-Adapter variants that essentially are blending the predictions that
come out of the two as described in Sec. 3.2.1 of the main paper. We confirm that SVL-
Adapter is always better than its constituent parts when used independently. Interestingly,
we see the larger benefits of using SVL-Adapter instead of pure self-supervised feature adap-
tation in the “Standard” datasets.

A.4 Replacing the encoder with ImageNet or CLIP features
To better understand the importance of the features extracted by a self-supervised encoder
Es, we replace them with features extracted by either the CLIP ResNet50 features or an Im-
ageNet pretrained ResNet50 while keeping the rest of the components fixed. In Fig. A4 we
see that SVL-Adapter keeps delivering the best performance on average and especially on the
challenging tasks when compared with a similar adapter that starts from ImageNet or CLIP
ResNet50 features. Perhaps surprisingly, we see that adaptation from ImageNet features is
clearly superior to adaptation from the CLIP features when evaluated on the challenging
tasks. Despite the large size of the corpus that CLIP is pretrained on, it seems that the quan-
tity of data does not necessarily translate to the visual diversity needed to tackle challenging
tasks that potentially fall out of distribution, which could be better addressed with ImageNet
pretrained models.

A.5 The impact of λ parameter on SSL and CLIP fusion
As we have seen in the main text, some tasks are easier for vision-language models that are
pre-trained on online image and text pairs while some are quite challenging. Thus, a constant
fusion parameter λ (see Eqn.3) between adapted self-supervised and Zero-shot CLIP features
for all cases would yield sub-optimal results. We run an ablation experiment on SVL-Adapter
where we vary λ with values ranging from 0 to 1 and compare with the parameter-free SVL-
Adapter* approach proposed in Sec. 3.2.1. Note that a low value of λ here means that the
self-supervised features adapted via low-shot learning are taken more into account. After
observing Fig. A5, we can see that the “Challenging” tasks (†) need a lower value of λ to
perform well on the test set while most of the other datasets reach peak performance with
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Figure A4: Here we compare the low-shot adaptation of our approach (SVL-Adapter) with
two variants that tune a similar adapter on top of supervised ImageNet features (Yellow)
and CLIP features (Grey). We see that adapting from self-supervised features keeps giving
the best results on average, especially on challenging tasks while we also observe decent
performance from the ImageNet-based adapter.

high λ values. In addition, it is shown that the SVL-Adapter* which picks λ based on CLIP’s
average prediction confidence is typically near the top performing points of the curve.

A.6 Ablations on the components of SVL-Adapter
We perform multiple ablations on the components of SVL-Adapter, varying the pre-training
source, CLIP’s vision backbone and the underlying self-supervised method. The results can
be found on Table A1. Given this table, we confirm that fusing self-supervised features learnt
for the task at hand with Zero-shot CLIP gives the best performance. Moreover, replacing
either CLIP’s backbone with a more advanced architecture or the self-supervised technique
with a better one can further boost performance. Indicatively, the average performance of
Tip-Adapter-F, the best performing baseline on the four camera trap datasets, is 50.8, which
is surpassed by a big margin even by a simple Triplet loss trained in a self-supervised manner
in the given dataset.

CLIP Visual Encoder Adapted Features Top-1 Accuracy
- SimCLR RN50 60.2∗

RN50 - 46.5∗

RN50 ImageNet RN50 66.3∗

RN50 CLIP RN50 64.0∗

RN50 SimCLR RN50 67.9∗

ViT-L/14 - 60.1∗

ViT-L/14 SimCLR RN50 74.9∗

RN50 SimCLR RN50 60.4‡

RN50 Triplet RN50 57.0‡

RN50 SimCLR RN50 + CP [39] 66.4‡

Table A1: Ablation experiments. ∗ are 16-shot Top-1 accuracy for all datasets and ‡ are
camera trap datasets only. ‘CLIP Visual Encoder’ is the zero-shot backbone and ‘Adapted
Features’ are the features used by SVL-Adapter’s adapter. (Top) Ablations on the visual rep-
resentations of SVL-Adapter. (Middle) Impact of different CLIP visual encoders. (Bottom)
Impact of different SSL methods.
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A.7 Understanding why SSL helps

To try to understand why adaptation from self-supervised features is superior on the challeng-
ing tasks, we plot their 2-dimensional embeddings on test images along with the respective
projections of CLIP features. We use UMAP [7] for the dimensionality reduction across
EuroSAT and MMCT. As we observe from Fig. A6, the embeddings of the self-supervised
learning features (right) provide a better separation of the underlying classes in the unseen
test set, while the 2-dimension projection of the CLIP extracted features is not as well struc-
tured and overlaps in many cases.

A.8 Quantitative results in tabular form

For a more detailed view, we present the quantitative results from Fig. 3 of the main paper in
a tabular format (Table A2).

Average Performance - All
CoOp CLIP-Adapter Tip-Adapter-F SVL-Adapter

1-shot 48.1 49.7 53.6 54.2
2-shot 50.9 53.6 55.2 58.0
4-shot 54.4 56.8 58.0 61.7
8-shot 59.5 59.9 61.6 65.3
16-shot 63.9 64.0 66.2 67.9

Average Performance - Standard
CoOp CLIP-Adapter Tip-Adapter-F SVL-Adapter

1-shot 59.8 62.9 64.9 65.4
2-shot 62.8 66.0 67.2 68.2
4-shot 67.4 69.3 70.4 70.6
8-shot 70.8 72.3 73.3 72.3
16-shot 74.5 75.5 76.9 74.1

Average Performance - Challenging †
CoOp CLIP-Adapter Tip-Adapter-F SVL-Adapter

1-shot 28.5 27.8 34.7 35.6
2-shot 31.2 33.0 35.3 41.1
4-shot 32.7 35.9 37.5 46.7
8-shot 40.8 39.4 42.1 53.6
16-shot 46.3 44.8 48.3 57.6

Table A2: Top-1 Accuracy from Fig. 3 of the main paper, but in tabular format. (Top)
Averaged across all 16 datasets with the corresponding zero-shot results for CLIP and our
zero-shot SVL-Adapter* being 46.5% and 52.5% respectively. (Middle) Averaged across
the “Standard” datasets with the corresponding zero-shot results for CLIP and our zero-
shot SVL-Adapter* being 58.4% and 63.1% respectively. (Bottom) Averaged across the
“Challenging” datasets with the corresponding zero-shot results for CLIP and our zero-shot
SVL-Adapter* being 26.7% and 34.8% respectively.

Citation
Citation
{McInnes, Healy, and Melville} 2018



6 PANTAZIS, BROSTOW, JONES, AND MAC AODHA: SVL-ADAPTER - SUPPLEMENTARY

B Implementation Details

B.1 Prompt templates
Across all experiments that involved Et , i.e. the text encoder of CLIP , we used a prompt
template for each of the datasets. As mentioned in the main text, for the “Standard” datasets
we use the simple prompts suggested by [9] and adopted by the subsequent vision-language
adaptation works [5, 11, 12]. With respect to the “Challenging” tasks, we utilized the generic
prompt "a photo of a {label}." for MMCT, CCT20, ICCT, Serengeti, and FMoW and "an
OCT scan of {label} retina." for the Optical Coherence Tomography (OCT) dataset. To make
sure our class names are suitable for the text encoder of CLIP, we transformed some of them
in a human-friendly format. For example, in OCT we replaced the disease names "CNV"
and "DME" with their full names "Choroidal Neovascularization" and "Diabetic Macular
Edema" respectively. In addition, we replace underscores with blanks and separate class
names (e.g. from "gazelleGrants" to "gazelle grants") where necessary.

B.2 Training details
In addition to the implementation details provided in Sec. 4.1 of the main paper, we present
more details about our modeling choices.
Self-supervised pretraining. For self-supervised learning we train for 200 epochs with
batch size 256 and learning rate 0.03 and cosine annealing. For optimization we use Stochas-
tic Gradient Descent (SGD) with 0.9 momentum and weight decay 0.0005. On top of the
ResNet 50 backbone, we used a projection neural network with 512 hidden size and 128
embedding size. For the image transformations on the 112× 112 sized images of the self-
supervised task we use cropping with random resizing, random horizontal flipping, color
jittering and grayscale conversion. For the context positive mining approach used to gener-
ate Fig. A1 we used the metadata and implementation details as suggested by [8].
Adapter tuning. The downstream task adaptation takes place on top of the frozen features
generated by the feature encoders, e.g. by the ResNet50 encoder Es that comes from self-
supervised pretraining. We train the adapter module As of SVL-Adapter for 50 epochs with
batch size of 32. Specifically, this module corresponds to a 2-layer MLP with a 256 hidden
layer that receives the frozen features from Es andf outputs the class logits which are used
in the fusion stage described in Eqn.3 of the main paper. For optimization, we utilized
Adam with learning rate 0.001 and a cross entropy loss between the logits and the few-shot
sample labels or pseudolabels in SVL-Adapter and Zero-shot SVL-Adapter respectively. For
the scenario where we use a small validation set to tune the λ parameter (Sec. 3.2.1 of main
paper), we use 1 and 2 samples for 1-shot and 2-shot classification respectively and 4 samples
for the rest of the labeled 4-, 8-, and 16-shots, similarly with preceding works [5, 11].
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Figure A5: Per-dataset 16-shot, test Top-1 accuracy for the 16 different datasets across var-
ious values of the λ parameter along with the proposed SVL-Adapter*. In each case, we
report the average of three runs. Datasets marked with † are added by us, and pose a signifi-
cantly greater challenge to existing methods.
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Figure A6: 2-dimensional UMAP embeddings of test image features coming from CLIP
(Left) or Self-Supervised (Right) ResNet50 feature extractors. For both EuroSAT (top) and
MMCT (bottom) we observe that the self-supervised learning features correspond to a better
separation between the dataset classes.
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