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Abstract
In this paper, we focus on image-to-image translation with text guidance, where a

text description is used to control visual attributes of the synthetic image produced from
a given semantic mask. To accomplish this task, we propose a new multi-stage gener-
ative adversarial network with three novel components: (1) a discriminator with dual-
directional feedback, which provides the generator at the same stage with fine-grained
supervisory feedback related to image regions, encouraging it to produce realistic im-
ages with finer regional details, and also facilitating generators at following stages to
have the ability to complete missing contents and correct inappropriate visual attributes,
(2) a compatibility loss guides generators to produce both realistic objects and the back-
ground, and also to achieve a good compatibility between them, and (3) a part-of-speech
tagging-based spatial attention to better build connection between image regions and
corresponding semantic words. Experimental results demonstrate that our model can ef-
fectively control the image translation using text descriptions. More importantly, the text
input allows our model to produce much diverse results and even new synthetic images
that are out-of-distribution of the dataset.

1 Introduction
Image-to-image translation aims to generate photo-realistic images from image conditions,
such as coarse sketches [4, 6, 7, 9, 12], simple semantic layouts [1, 31, 38], and fine-grained
pixel-level semantic maps [3, 12, 28, 29, 32, 33]. This task will stimulate applications in
various areas, including video game creation, automatic art design, and image editing.

However, to satisfy users’ preferences, these image conditions may not be rich enough
to determine the content and style of the generated results. This means that users cannot
freely design fine-grained visual attributes (e.g., color, texture, and style) of synthetic images,
which is typically undesirable in real-world applications. As shown in Fig. 1, given only the
semantic mask, users cannot determine the category, color, and background of an object.
However, in reality, users usually have their preferences when they create an image, e.g.,
a user may intend to have “a giraffe on green grass” or “a yellow plane in the grey sky”.
Based on this, it is highly desirable to have a model, which allows users to have the ability
to control the image generation process.
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Figure 1: Given a segmentation mask and a text provided by a user that describes desired
objects and visual attributes, the goal of this model is to generate realistic images semanti-
cally matching the given descriptions with the global structure defined by the masks.

In this paper, we propose to incorporate natural language descriptions into the image-to-
image translation framework, where the description is used to allow users to freely determine
the visual attributes of generated images. In particular, we focus on translating given masks
into realistic images aided by natural language descriptions.

Firstly, we propose a novel discriminator with dual-directional feedback. According to
feeding patches from higher-resolution fake/real images produced at higher stages to dis-
criminators at lower stages, it encourages the discriminators to provide generators at the
same stage with fine-grained supervisory feedback, related to image regions, encouraging
generators to be aware of not only the global structure, but also the quality of image regions,
which promotes the model to generate more realistic images with fine-grained regional de-
tails even at lower stages. This is actually in contrast to the widely adopted consensus in
multi-stage training that lower stages are only responsible for coarse results. Besides, the
improved discriminator can further provide feedback to higher-stage generators, with re-
spect to the quality of image regions, encouraging them to complete missing details and to
correct inappropriate visual attributes.

Secondly, we further introduce a new compatibility loss guided by a semantic mask.
Given real/fake objects and background, we construct new fake images by combing real
objects with the fake background or the real background with fake objects. The new com-
bined fake images can enforce generators to produce realistic images with a better visual
compatibility between objects and the background, i.e., both the generated objects and the
background should be realistic and also fit the corresponding real background and objects
without visual conflicts, respectively.

Finally, a new part-of-speech tagging-based (POS) attention is proposed, where POS
filters out non-semantic words, and then allows the generator to capture detailed relations
between image regions and corresponding semantic words to enable a translation with fine-
grained regional details and accurate controllability. Extensive experiments demonstrate
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Figure 2: Architecture of our network. POS-Attn denotes the part-of-speech tagging-based
attention. LC denotes the compatibility loss.

that, given a semantic mask, our method can generate high-quality and diversified images,
strictly controlled by given text descriptions, and even produce new images that are out-of-
distribution of the given dataset, e.g., objects with an unusual color or a novel composition
between objects and the background.

2 Related Work
Image-to-image translation is closely related to our work. Chen & Koltun [3] achieved a
high-quality image generation using a single feedforward network. Wang et al. [33] proposed
multi-scale generator and discriminator architectures in order to generate high-resolution im-
ages. Mo et al. [26] made use of object semantic masks to achieve instance transfiguration.
Qi et al. [29] proposed a semi-parametric approach for image-to-image translation. Park
et al. [28] implemented an affine transformation in conditional normalization techniques to
avoid information loss. However, all these works and others [12, 32] only focus on gen-
erating realistic images from pixel-labeled semantic maps, and fail to have the ability to
determine visual attributes of the synthetic images.
Text-guided image generation and manipulation have made great progress with the devel-
opment of GANs [8, 14, 15, 17, 37], including image generation from text [1, 11, 13, 18, 19,
22, 23, 24, 30, 34, 35, 36], and image modification using text [5, 20, 21, 27]. Text-to-image
generation aims to generate an image from a given text with text-image semantic alignment,
and text-guided image manipulation is about editing given images using text descriptions to
achieve semantic consistency.

3 Generative Adversarial Networks with Text Guidance
Given a semantic mask S and a text description T , we aim to translate the mask S into a real-
istic image I′ with the global layout defined by the mask S. Meanwhile, the synthetic image
I′ should semantically match the description T , containing all required visual attributes. To
achieve this, we propose three novel components: (1) a discriminator with dual-directional
feedback, (2) a compatibility loss, and (3) a part-of-speech (POS) tagging-based attention.

3.1 Architecture
Our architecture is shown in Fig. 2. Given a text description T , we feed it into a pre-trained
RNN (e.g., LSTM [34]) to generate text features. Then, we adopt an affine combination
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module [20] at each stage to fuse text features (generated from the previous stage) with the
segmentation mask, which can build an accurate correlation between words and the corre-
sponding semantic parts of the mask, and thus embed text information into the generation
process enabling an effective controllable ability. Next, the fused features are refined by a
residual block followed by an upsampling block to produce hidden features, which are fed
into a generator to output synthetic images I′ and also serve as the input for the next stage to
produce images at a higher resolution. Meanwhile, we use POS-based attention to capture
correlation between image regions and corresponding semantic words. The whole frame-
work generates high-quality images progressively, matching the global structure defined
by the segmentation mask, and gradually produces regional visual attributes semantically
aligned with the given description.

3.2 Discriminator with Dual-Directional Feedback
Generating realistic images involving different modality representations (e.g., natural lan-
guage) on difficult datasets (e.g., COCO) is a big challenge for generative models [5, 27, 30],
even with a multi-stage architecture [19, 34, 36], which generates a coarse image at the first
stage, and then progressively increases its resolution with finer details. The ineffective gen-
eration is mainly because: (1) these models fail to produce a complete basic structure at
lower stages, especially at the first one, which means that some parts of the synthetic image
generated at the first stage are unrealistic, and (2) generators lack the ability to complete
missing details or rectify inappropriate visual attributes. Thus, due to the flawed basic image
and less efficient generators, the models fail to generate high-quality images with realistic
details everywhere. This coincides with the observation shown in [39], where the quality of
initial image features can greatly affect the quality of output images.

To address the above issues, we propose a novel discriminator with dual-directional feed-
back, which can fully explore the internal distribution of patches within a single image to
strengthen the differential ability of discriminators and also the rectification ability of gen-
erators. As shown in Fig. 2, our network has a multi-stage architecture, and each stage has
a generator and a discriminator, {G1,D1;G2,D2, . . .}. Different-scale images are generated
progressively, {I′1, I

′
2, . . .}, and the resolution of the synthetic image is 4 times of the previous

one. The generation of an image starts at the coarsest scale with the smallest resolution and
sequentially passes through higher stages to the finer scale with larger resolution. To gen-
erate a complete structure at lower stages with finer details and thus to provide better basic
image features for the following stages, we feed patches of real and fake images produced
at higher stages to discriminators at lower ones, where the internal distribution of patches
within images at higher stages contains unseen but finer pieces of information, which can
be used as extra information to help to train and refine discriminators at lower stages to
improve their differential ability, which in turn encourages generators at the same stages to
produce a complete basic structure with fine-grained details (see Fig. 2, blue lines). The
extra unconditional adversarial loss LZDi for the discriminator at stage i is defined as:

LZDi =−(
K

∑
k=i+1

(EIk∼Pdata [log(Di(Pk))]+EI′k∼PGk

[
log(1−Di(P′

k))
]
)), (1)

where K is the total number of stages, P′
k and Pk are random patches of the synthetic image I′k

and the real image Ik at a higher stage k, respectively. The size of patches P′
k and Pk matches

the input requirement of the discriminator Di.
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Besides, we further feed the informative patches of fake images produced at higher stages
to the improved discriminators at lower ones, in order to strengthen the rectification ability
of generators, which can complete missing details and correct inappropriate visual attributes
(see Fig. 2, red lines). Thus, the extra unconditional adversarial loss LZGi for the generator
at stage i is defined as:

LZGi =−(
i−1

∑
k=1

EI′i∼PGi

[
log(Dk(P′

k))
]
), (2)

where i > 1, P′
k is a random patch of the ith stage synthetic image I′i , and the cropped size of

P′
k matches the input requirement of the discriminator Dk.

Why does the refined multi-stage architecture work better? Patches from higher-stage
real/fake images contain rich region-level fine-grained details that discriminators at lower
stages are unfamiliar with. Taking these new informative patches as input, the low-stage dis-
criminators can learn to distinguish details. In the generator training phase, discriminators
can promote generators at the same stages to produce not only the coarse global structure, but
also fine-grained regional details as much as possible. Moreover, the enhanced lower-stage
discriminator can provide regional supervisory feedback to generators at higher stages, en-
couraging generators to complete missing contents and rectify inappropriate visual attributes
produced from lower stages.

3.3 Compatibility Loss
To generate both realistic objects and the background with a better visual compatibility be-
tween them, we propose a novel compatibility loss. More specifically, we use the provided
semantic mask to extract objects from the background on both fake and real images. Then,
we create new compositions with different objects and background, and feed the fake com-
posed images to discriminators. By doing this, the discriminator can be enhanced to have
the ability to check the image quality of objects and the background, and also the visual
compatibility between them, which in turn encourages generators to produce both realistic
objects and the background with a better compatibility. The loss LCi at stage i is defined as:

LCi =−E(X1
i ,X

2
i )

[
log(Di(X1

i ))
]
+
[
log(Di(X2

i ))
]

, (3)

where X1
i represents the new image composed of fake objects with real background, and X2

i
denotes real objects with fake background at stage i.

3.4 Part-of-Speech Tagging Based Spatial Attention
Given a text description, it may contain some less important words that cannot help image
generation. For example, words “a, to, its” in a description do not have any semantic mean-
ing, but if we keep these words, they may be connected with some visual attributes in the
synthetic image, which may harm the ability of accurate control. Therefore, to ensure an
accurate control of visual attributes, we propose a part-of-speech (POS) tagging-based at-
tention, which first labels each word based on its definition and context, i.e., its relationship
with adjacent and related words in the sentence [2], and produces attention weights to build
correct relations between visual attributes and corresponding semantic words.

POS takes the text description as input and then labels each word with corresponding
tags. In our model, we only keep words with specific tags: NN*, IN*, VB*, and JJ*. NN∗
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represents all nouns in different forms, IN∗ represents preposition or subordinating conjunc-
tion, VB∗ represents all verbs in any form, and JJ∗ represents all adjectives. We only keep
these specific words, because nouns, prepositions, and verbs already capture the main mean-
ing of a sentence, and adjectives contain the major descriptions of visual attributes of an
image. Then, similarly to [34], the POS-based spatial attention weights are obtained by the
following equations:

βi, j =
exp(ai, j)

∑
L−1
l=0 exp(ai,l)

, where a = vT ∗wpos, (4)

where T is the transpose, v∈RD×(H∗W ) are intermediate visual hidden features, wpos ∈RD×L

are filtered word embeddings containing desired semantic words, H is the height, W is the
width, D is the feature dimension, and L represents the number of left semantic words in a
sentence. So, βi, j denotes the correlation between the ith visual location and the jth word.
Then, the weighted visual hidden features can be obtained by v′ = wpos ∗β T , containing the
information of the corresponding semantic words.

3.5 Objective Functions

To train the model, we add extra unconditional adversarial losses (LZDi , LZGi ) shown in Eqs. 1
and 2, and the compatibility loss (LCi ) shown in Eq. 3 to traditional conditional GANs’ objec-
tives at each stage. Generators and discriminators are optimized alternatively by minimizing
their objective functions.

Discriminator objective. The loss function for the discriminator follows those used in the
ControlGAN [19], but we introduce an extra unconditional adversarial loss (Eq. 1) at each
stage to strengthen the differential ability of discriminators at lower stages, which, in turn,
encourages the generators at the same stage to produce a complete structure with finer details.

Furthermore, we introduce a new compatibility loss (Eq. 3) in discriminators to better
improve their differential ability, which can encourage generators to produce realistic details
on both objects and the background. Thus, the complete loss function for the discriminator
Di at stage is i is defined as:

LDi =−1
2

EIi∼Pdata [log(Di(Ii))]−
1
2

EIi ′∼PGi

[
log(1−Di(I′i ))

]
︸ ︷︷ ︸

unconditional adversarial loss

−1
2

EIi∼Pdata [log(Di(Ii,T ))]−
1
2

EI′i∼PGi

[
log(1−Di(I′i ,T ))

]
︸ ︷︷ ︸

conditional adversarial loss

+λ1((1−Lcorre(Ii,T ))+Lcorre(Ii,T ′))+λ2LZDi +λ3LCi ,

(5)

where I is the real image sampled from the true image distribution Pdata, T is the correspond-
ing matched text that correctly describes I, I′ is the generated image sampled from the model
distribution PG, and T ′ is a mismatched text description randomly sampled from the dataset.
The unconditional adversarial loss makes the synthetic image I′ indistinguishable from the
real image I, while the conditional adversarial loss aligns the generated image I′ with the
given text description T . Lcorre [19] determines whether word-related visual attributes exist
in the image. λ1, λ2, and λ3 are hyperparameters controlling the importance of additional
losses, and all are set to 1.
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Generator objective. The loss function for the generator follows those used in the Control-
GAN [19] with an extra unconditional adversarial loss (Eq. 2) at each stage to strengthen the
rectification ability of generators, which can complete missing details and correct inappro-
priate visual attributes. Thus, the loss function of the generator Gi at stage i is defined as:

LGi =−1
2

EI′i∼PGi

[
log(Di(I′i ))

]
︸ ︷︷ ︸

unconditional adversarial loss

−1
2

EI′i∼PGi

[
log(Di(I′i ,T ))

]
︸ ︷︷ ︸

conditional adversarial loss

+λ4LDAMSM +λ5LZGi ,

(6)

where LDAMSM [34] measures the text-image similarity at the word-level to provide fine-
grained feedback for image generation. λ4 and λ5 are hyperparameters controlling the im-
portance of the additional losses LDAMSM and LZGi , which are set to 5 and 1, respectively.

4 Experiments
We are unaware of any previous image-to-image translation work with text guidance, so we
compare our method with the text-to-image generation methods AttnGAN [34] and Con-
trolGAN [19], and image-to-image translation SPADE [28]. To have a fair comparison, we
slightly modify AttnGAN and ControlGAN by implementing an affine combination mod-
ule [20] to incorporate segmentation masks, denoted as AttnGAN-Seg and ControlGAN-Seg.
As the input for SPADE is a pixel-labeled semantic map, for a fair comparison, we slightly
modify the code released by authors, where we only keep the label for desired objects and
set the rest to 0.
Dataset. COCO [25] contains 82,783 training images and 40,504 validation images. Each
image has a ground-truth semantic mask and 5 descriptions. We only use binary segmenta-
tion masks instead of fine-grained pixel-labeled semantic maps. We preprocess the dataset
according to the method in [35].
Implementation. Our model has three stages, and each stage has a generator and a dis-
criminator. Three different-scale images (64×64, 128×128, and 256×256) are generated
progressively. The model is trained for 120 epochs on the COCO dataset using the Adam op-
timizer [16] with the learning rate 0.0002. The hyperparameters controlling the importance
of extra losses LZD , LZG , and LC are set to 1. All experiments are conducted on a single
Quadro RTX 6000 GPU.

4.1 Quantitative and Qualitative Comparison
Quantitative comparison. We adopt Fréchet Inception Distance (FID) [10] and Inception
Score (IS) [34] to evaluate the quality and diversity of synthetic images. Also, to measure
the semantic consistency between the generated images and the corresponding text descrip-
tions, we adopt the R-precision (R-prcn) [34], which is an evaluation metric for ranking
retrieval results. As shown in Table 1, our model achieves better FID and IS scores, which
demonstrates that our model can generate realistic images with high diversity. Also, the
better R-prcn value indicates that the synthetic images generated by our model are highly
semantically matching the given text descriptions.
Qualitative comparison. Fig. 3 shows a visual comparison between our method and SPADE
on COCO. For SPADE, we randomly generate several synthetic images for the same seman-
tic mask input by sampling different random vectors. For our method, given the semantic
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SPADE Ours

Figure 3: Qualitative comparison of SPADE and ours on the COCO dataset. For simplicity,
we omit corresponding text descriptions for our approach.

Method FID IS R-prcn (%)
SPADE 42.74 11.69 ± 0.26 -
AttnGAN-Seg 32.39 12.09 ± 0.28 75.24 ± 3.39
ControlGAN-Seg 31.41 11.56 ± 0.16 80.43 ± 2.79
Ours 28.30 15.96 ± 0.16 83.23 ± 1.37

Table 1: Quantitative comparison: FID, IS, and R-prcn of ours and baselines on the COCO
dataset. For FID, lower is better, for IS and R-prcn, higher is better.

mask, we randomly sample text descriptions and then use our model to produce various syn-
thetic images under the control of these descriptions. We can easily observe that our method
attains a much better image quality and diversity, and also flexibly controls the visual at-
tributes of the generated images as well.

Besides, as shown in Fig. 3, last two rows, our method can generate novel images with
a good visual compatibility that are out-of-distribution of the given dataset, e.g., the stop
sign floating in the sky, red/blue horses, and different color boats on the green grass or the
dirt. Such unusual colors or compositions between objects and the background demonstrate
that our method effectively disentangles different visual attributes, and accurately builds
connections with corresponding semantic words.

In Fig. 5, right, we further verify the disentanglement ability of our method. As we can
see, if there is no segmentation mask being provided to the network, only the background is
generated by our model, but the result still semantically matches the given text description.
Besides, the generation of objects has almost no impact on the generation of the background,
even when we provide different segmentation masks, which illustrates an effective disentan-
glement between fore- and background. Based on this, our model is able to generate diverse
synthetic results by adding objects without changing the background, and also enables us to
modify visual attributes of synthetic images, while preserving content that is not required in
the given text description.
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A large
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are standing
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a: Text b: Segmentation
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w/o Dual

d: Stage 2,
w/o Dual

e: Stage 3,
w/o Dual

f: Stage 1,
Our

g: Stage 2,
Our
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Figure 4: Effectiveness of dual-directional feedback. c, d, and e show the synthetic images
produced at each stage by the model without adopting the discriminator with dual-directional
feedback. f, g, and h show the synthetic images generated at each stage by our full model.

a: Stage 1, w/o 
Dual b: Stage 2, Ours c: Stage 3, Ours Giraffe standing around in the middle 

of a field with trees in the background.Segmente Marks

Figure 5: Left: rectification ability of our generators. a denotes images generated at the first
stage by the model without dual-directional feedback. In b and c, denote our model takes
these flawed features and feeds them through stages 2 and 3 progressively, producing the
corresponding images shown at b and c. Right: disentanglement of objects and background.

4.2 Ablation Studies

To evaluate the effectiveness of each proposed component adopted in our network, we con-
ducted the ablation studies shown in Table 2.
Discriminator with dual-directional feedback. When the model adopts our proposed dis-
criminator with dual-directional feedback, the scores on all evaluation metrics improve sig-
nificantly. We attribute this improvement to the generation of high-quality visual features
at lower stages, which contain both global information and fine-grained regional details,
and thus further improve the final synthetic results. This is also supported by the observation
found in text-to-image generation [39], where the quality of initial image features can consid-
erably affect the quality of output images in such a sequential upsampling generation pipeline
(see Fig. 2). In Fig. 4, we further visualize this improvement. Without dual-directional feed-
back, the model fails to produce completed images with appropriate regional details at the
lower stages, especially the first stage, e.g., “the zebra misses the back and head” at the top
of columns c and d, and “there is no tree background”, and “the smaller giraffe misses legs”
at the bottom of columns c and d.

Besides, we think that the improvement is also because the discriminator with dual-
directional feedback enables generators to have an effective rectification ability, where the
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Method FID IS R-prcn (%)
Ours w/o Dual 32.14 12.16 ± 0.20 80.13 ± 2.20
Ours w/o Compatibility 29.47 14.72 ± 0.32 81.43 ± 1.21
Ours w/o POS-Attn 32.72 12.77 ± 0.21 81.07 ± 1.60
Ours w/ WSA [34] 30.14 14.49 ± 0.15 82.03 ± 1.03
Ours 28.30 15.96 ± 0.16 83.23 ± 1.37

Table 2: Ablation studies. “w/o Dual” denotes without using the proposed discriminator with
dual-directional feedback; “w/o Compatibility” denotes without compatibility loss; “w/o
POS-Attn” denotes without part-of-speech tagging-based attention; “w/ WSA” denotes using
the attention in [34] to replace our proposed POS-based attention.

generator at the following stages can complete the missing content or rectify inappropriate
visual attributes. For example, as shown in Fig. 4, without using the proposed discriminator,
the model leaves the missing areas without any correction (see columns d and e). To further
verify the rectification ability, we feed the flawed features generated at the first stage by the
model without adopting the discriminator with dual-directional feedback to our full model,
shown in Fig. 5, left. Even if there are missing parts in the given images, the generators
in our full model are able to complete the missing attributes, e.g., “adding back and head
for the zebra” at the top row, and to correct inappropriate visual attributes, e.g., “change the
background with trees” at the bottom row.
Compatibility loss. To verify the effectiveness of the compatibility loss, we removed it from
our model and then checked all evaluation metrics, shown in Table 2. Without it, the scores
on all metrics degrade. We think that, without the compatibility loss, the model may fail to
produce realistic objects or the background in the synthetic images, and the compatibility
between them may be far from satisfactory.
Part-of-speech tagging-based spatial attention. As discussed in Section 3.4, the imple-
mentation of part-of-speech (POS) tagging can help to filter out specific words, especially
less important ones, which can effectively prevent less useful information being contained in
word and sentence features, and also avoid building inappropriate connections between non-
semantic words and visual attributes, such that the model can produce high-quality images
with finer regional details, and also achieve a better controllable performance.

To evaluate its effectiveness, we first remove it from the model, and then replace it with
word-level spatial attention [34], shown in Table 2. As we can observe, the worse perfor-
mance on “w/o POS-Attn” shows its effectiveness on high-quality image generation. Com-
pared to “w/ WSA”, our full model achieves better scores on all metrics, which demonstrates
that unnecessary connections can be built between non-semantic words and visual attributes,
and these useless bonding can harm the quality of the synthetic results.

5 Conclusion

We have proposed a novel generative adversarial network, which effectively embeds control-
lable factors, i.e., text descriptions, into image-to-image translation to control the generation
of objects and visual attributes. Also, our model disentangles objects from the background,
produces high-quality image features at lower stages, and has a rectification ability. Exten-
sive experiments demonstrate the advantages of our method, with respective to both high-
quality image generation and the effectiveness of control of local visual attributes.
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