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Fig. 1. Given a segmentation mask and a text provided by a user that describes desired objects ControlGAN-Seg || 31.41 11.56 =0.16 80.43 +2.79
and V.ISU.al attrﬂ.)ut.es, the. goal of this model is to generate realistic images semantically matching Ours 2830 15.96 + 0.16 83.23 + 1.37
the given descriptions with the global structure defined by the masks.
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Fig. 5. Left: rectification ability of our generators. a denotes images generated at the
first stage by the model without dual-directional feedback. In b and c, denote our
model takes these flawed features and feeds them through stages 2 and 3 progressively,
producing the corresponding images shown at b and c. Right: disentanglement of
objects and background.
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Table 2. Ablation studies of different components used in our approach.

3! funcions Method FID IS R-pren (%)
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T oo Ours w/o POS-Attn 32.72 1277 £0.21 81.07 £1.60
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Fig. 2. Architectur ur network. POS-Attn denotes the part-of-speech tagging-based attention.
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