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Abstract

Saliency prediction has achieved significant progress in color images owing to deep
neural networks trained on annotated human eye-fixation data or ground truth saliency
maps. Unlike in image/video domain, only a few works have addressed saliency in-
formation to further guide 3D point cloud understanding due to the lack of annotated
training data. Moreover, it is certainly difficult and not feasible for subjects to annotate
eye-fixation or density saliency map groundtruth for point clouds due to the irregular,
unordered, and sparse characteristics of 3D point cloud data. To alleviate this issue, we
present a universal framework to transfer saliency distribution knowledge from color im-
ages to point clouds. We first apply pre-trained RGB saliency models to predict saliency
maps for images. We then assign saliency value of each point on 3D point cloud reg-
istered to respective 2D multi-view color images by using the RGB saliency prediction.
Based on that, we construct a pseudo-saliency dataset (i.e. FordSaliency) that presents 2D
to 3D transferred saliency information for point clouds. Furthermore, we adopt existing
point cloud-based models to learn saliency distribution from pseudo-saliency labels. Ex-
perimental results on our FordSaliency dataset verify that the point cloud-based models
can learn saliency distributions from point cloud pseudo-labels. Finally, we demonstrate
an application of point cloud saliency predictions on 3D semantic segmentation. Specif-
ically, we propose an attention guided learning model by combining learned saliency
knowledge and semantic features for large-scale point cloud segmentation. Extensive ex-
periments of the proposed attention guided learning model on SemanticKITTI [1] dataset
show that the learned saliency knowledge effectively improves the performance of the 3D
semantic segmentation task.
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1 Introduction

3D point cloud understanding has gained increasing attention with the wider application
of robotics technologies such as autonomous vehicles and augmented/virtual/mixed reality.
Concretely, large-scale data-based applications, such as 3D object detection [42], LiDAR se-
mantic segmentation [9, 44], and odometry estimation [31] empower such robotics technolo-
gies. On the other hand, utilizing saliency information in various 2D computer vision tasks
including image translation [12], object tracking [18, 43], key-point selection [28, 30], and
person re-identification [14, 25, 40] has moved forward the-state-of-the-art results thanks
to its capacity to cover pre-dominant information in a scene. However, the unstructured,
unordered, and density-varied properties of point clouds make it difficult for conventional
point-cloud-based methods to effectively and rapidly process informative visual features in
large-scale scenes. Due to its importance in real-time autonomous vehicles, several works
[5, 26, 41] have attempted to apply saliency detection algorithms to point cloud data-based
tasks. As these works also verify that performance of 3D point cloud understanding tasks
can be improved further with efficient saliency knowledge integration.

Although several attempts have been made to find effective solutions for saliency detec-
tion on point clouds [5, 26, 28, 41], most challenges are yet to be explored further. First,
previous saliency methods such as [5, 41] have operated on relative small-scale point cloud
data of indoor scenes or dense mesh data of 3D objects, where scenes are less complicated
with only a few background points. These methods [5, 26] have not been developed for
large-scale outdoor driving scenes, e.g. a dataset of the similar scale as the SemanticKITTI
[1] dataset. Second, due to the lack of human-annotated training datasets, it is unlikely to
employ supervised learning scheme or convolutional networks with powerful representation
capabilities for point cloud saliency detection. Existing saliency approaches on point clouds
[26, 28] mainly utilize traditional computation models to calculate saliency/importance value
of each point. Third, there are numerous different rotation angles and scaling/zoom sizes for
the same point cloud scan, and the saliency distribution could be varied when the viewing
angle or observing scale is changed. Thus, it is not feasible for subjects/human to annotate
eye-fixation ground-truth for disordered point clouds. In a word, the mentioned typical is-
sues make saliency prediction on point cloud challenging. Therefore, it is highly desired
to develop a practical pipeline based on deep learning for saliency prediction on large-scale
point clouds.

Currently, many previous studies [22, 24] have suggested that it is possible to establish
correspondences between a 3D laser scanner and an optical camera system. By means of the
camera parameters, these LIDAR-based methods [22, 24] are able to take full advantage of
visual information from mature 2D computer vision models. In this work, we present a com-
mon framework (see Figure 1) to transfer saliency distribution knowledge from color images
to point clouds. And then, we explore the use case of this learned saliency information by
integrating it to point cloud segmentation task (see Figure 2).

In brief, the key contributions of this work can be summarized as follows:

* We design a universal framework to transfer saliency distribution knowledge for point
clouds. Based on this pipeline, we build a point cloud saliency dataset (FordSaliency)
based on the FordCampus dataset [21] for training LiDAR-based saliency models.

¢ We adopt existing LiDAR-based models to learn saliency distribution from pseudo-
labels, and we compare the performance of these point cloud saliency models on our
FordSaliency dataset as an initial evaluation benchmark.
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Figure 1: Framework overview of LiDAR saliency annotation and model training.

* We take advantage of these learned point cloud saliency prediction networks in seman-
tic segmentation task to enhance accuracy. To do this, we propose attention guided
point cloud semantic segmentation learning with a two-stream network. First stream
is the pre-trained saliency prediction network to guide the segmentation task. And sec-
ond stream is semantic segmentation module fine-tuned with the saliency information.

Extensive experimental results on our FordSaliency dataset show that the LiDAR-based
methods could learn saliency knowledge distribution from pseudo-saliency annotations on
point clouds. Furthermore, the experiments on SemanticKITTI [1] dataset suggest that our
two-stream segmentation model with saliency distribution knowledge significantly improves
the performance of semantic segmentation on point cloud of large-scale driving scenes.

2 Related Works

Saliency detection: Saliency detection aims to find the most eye-attracting locations in a
visual scene, which can be traced back to the pioneering work of Itti ef al. [11]. With rapidly
emerging advances and applications of deep learning techniques, saliency detection on color
images/videos [6, 17] has made great progress in recent years. There are also several works
[5, 26, 28, 30, 41] for saliency computation on point clouds. However, saliency methods
focusing on 3D meshes or indoor scenes are limited in their ability to process large-scale
3D point clouds such as 3D driving data. Also, saliency models extracting handcrafted
descriptors may ignore informative representations for point clouds with varying density
and complex background in outdoor scenarios.

LiDAR semantic segmentation: LiDAR semantic segmentation [9, 10, 19, 23,27, 36, 44] is
a crucial 3D computer vision task for autonomous driving, which aims to predict the semantic
class of each point on a LiDAR scan. With different representation of the input point cloud,
3D semantic segmentation can be categorized into point set-based model [10, 23], range
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image-based model [19], and voxel-based [9, 44] model. As a pioneering point set-based
method, PointNet [23] uses Multiple Layer Perceptrons (MLPs) to learn point-wise features
for classification and segmentation. RandLLA-Net [10] presents randomly sampling the input
point cloud, and employs a local feature aggregation module to compensate information
loss introduced by the random sampling. It first predicts semantics on a subset of point
cloud, then projects the predictions to the full LiDAR scan [10]. RangeNet++ [19] first
projects 3D point clouds onto 2D range images, then utilizes 2D convolutional networks to
extract features for semantic segmentation. Considering the range property of LiDAR point
cloud, Cylinder3D [44] proposes a solution to leverage cylinder partition for 3D semantic
segmentation. It also brings an asymmetrical model to encoder-decoder voxel-based features
by 3D sparse convolutional networks.

3 Proposed Framework

3.1 Problem Formulation

Given an input point cloud P={p;| i=1,...,N, p; € R?} with a set of disordered points, where
N represents the point number of LiDAR frame and each point p; could contain d dimen-
sional features, such as point coordinates (x,y,z), colors (r,g,b), reflectivity, and normal
feature. The objective of saliency detection model on point cloud is to predict the saliency
score map S={s;| i=1,...,N, s; € [0, 1]}, where s; denotes the saliency score of point p;. After
normalizing the saliency prediction, the closer the saliency score s; to 1, the more attentive
the point p;. In 3D semantic segmentation task, its goal is to predict the semantic class map
C={c¢i| i=1,...,N, ¢; € R}, where ¢; indicates the semantic category of point p;.

3.2 Saliency Knowledge Transfer

The unstructured and density-varying properties of point cloud make it difficult to annotate
eye-fixation ground truth by human subjects. Thus, we propose a common pipeline to trans-
fer saliency knowledge from color images to point clouds, as shown in Figure 1. Inspired by
the works on transfer learning [13, 37] and knowledge distillation [4, 8, 32], our main idea
of this work is based on a hypothesis that, a pre-trained saliency model on RGB images or
point cloud has learned abundant saliency distribution knowledge from training data. And it
could be a good transmitter to transfer the learned knowledge if the generalization capability
of the saliency model is good enough. To verify our assumption, we transfer the saliency
knowledge from RGB images to point clouds in this work.

In Figure 1, we show the procedure of point cloud saliency projection. We first leverage
existing pre-trained RGB saliency models as saliency pseudo-annotators to label the saliency
distributions of color images from LiDAR-based FordCampus [21] dataset. In order to avoid
bias introduced by a single saliency method, we average the predictions of M pre-trained
models to generate final saliency distribution of multi-view color images. The averaged
annotation can be represented by S,,, = G(ﬁ Zf” S;), where S; is the saliency prediction of
i-th RGB deep learning model; ¢ denotes normalization function. We regard these predicted
saliency distributions as pseudo-saliency ground-truth annotations of point clouds. Next, we
assign the values on pseudo-saliency maps to point cloud. By rigid-body transformations
and sensor/camera parameters provided in FordCampus [21] dataset, we can easily project
any points from one coordinate frame to the other, more details about the transformation can
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be referred to the study of [21]. After we obtain the saliency distribution of images from
different camera views, we assign saliency values to the corresponding points registered on
multi-view images. Finally, we assign the saliency values of points from the camera image
coordinate system to the corresponding point cloud domain. In this way, we build a point
cloud pseudo-saliency dataset (FordSaliency) based on FordCampus [21] dataset. Although
the annotations of FordSaliency are pseudo-labels, we believe that these pseudo-labels could
contain saliency distribution knowledge, which can be utilized to train LIDAR-based models
for saliency detection on point clouds.

3.3 Learning Point Cloud Saliency

In order to learn point cloud saliency representations, we adopt existing LiDAR-based se-
mantic segmentation models [10, 23, 44] as backbones of the feature extractor. As shown
in Figure 1, given a 3D LiDAR point cloud with coordinates and corresponding point-wise
features, we first feed it into the feature extractor to obtain the representations of each point.
Next, these learned features are passed by a saliency prediction layer to output the saliency
score map of the input point cloud. We considered two types of model to learn saliency dis-
tribution on point clouds: i) classification based saliency prediction and ii) commonly used
saliency regression.

In saliency classification modelling, our key motivation is that saliency score and prob-
ability can be split into different levels for high/low attentive points by quantization of the
ground truth saliency values. Considering the fact that saliency map of color image is a
8-bit gray image, we experimentally set the number of class to K based on the specific bin
size/width. We convert 8-bit saliency label s to class k by the following formula:

Seis =k, if s € [k x bin, (k+ 1) X bin]. (D

where bin =28 /K and k = 0,...,K — 1. To obtain the probabilities of each class, we apply
softmax activation function to the embedding features F;;; from the last prediction layer of
saliency classifier, which can be formulated as follows:

P = softmax(F;) 2

where PP includes K probabilities of saliency classes for each point p;. Then we calculate the
predicted saliency value $; for each point p; by using the probabilities:

A

i

™

PG, j)*Jj A3)

j=1

where i and j denote the index of point and class, respectively. Thus, the saliency prediction
map of input point cloud can be represented as S, = {$ili=1,...,N,§; € [0,1]}. Here, we
leverage the cross-entropy loss for optimizing the saliency classifier on point clouds.

In regression based saliency learning, network is modeled to map input data to output
saliency values learned from the distribution of ground truth saliency maps. Like the saliency
detection models [4] on color images, the predicted saliency score map S’,eg of point cloud is
scaled to the range of [0, 1]. Following the previous RGB saliency studies [4, 6], we adopt
saliency distribution-based loss in Eq. 4 to optimize the model parameters.

ACreg = YEKLD(gregaS) + 5£CC(§reg7S) + nEMSE(§r6g7S> (4)
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Figure 2: Framework of proposed two-stream semantic segmentation model. The saliency
prediction network is pre-trained on our FordSaliency dataset.

where Lx1p, Lcc, Lyse denote Kullback-Leibler Divergence (KLD) loss, Correlation Coef-
ficient (CC) loss, and Mean Square Error (MSE) loss, respectively; v, 8,7 are the weighting
constants of the three losses, respectively; S indicates the pseudo-saliency-label of point
clouds. Once the model training is completed, we believe these point cloud saliency models
have the saliency knowledge transferred from color images. We then utilize them to improve
the performance of 3D semantic segmentation task.

3.4 Two-Stream Segmentation Model

As depicted in Figure 2, we develop a two-stream semantic segmentation model on point
cloud by combining features from saliency module and semantic module. We feed an in-
put point cloud into the saliency branch to predict saliency distribution of the whole scene.
Meanwhile, the point cloud is also fed into the semantic branch to extract point features
and output the predictions of the semantic class. To validate the effectiveness of the learned
point cloud saliency distribution knowledge, we initialize and freeze the parameters of the
saliency branch with the weights pre-trained on FordSaliency dataset. We consider three dif-
ferent integration ways to combine point saliency embedding/distribution and point semantic
information:

1) SalLiDAR-I: Attention guided loss for semantic segmentation. Since the predicted
saliency distribution represents the attention level of each point, we can apply it to guide the
parameter optimization of the semantic segmentation model. In Figure 2, SalLiDAR-I is the
model without saliency concatenation module. The key motivation of this idea is guiding
the semantic module by using a weighted attentive loss based on saliency distribution that
pays more attention to class prediction of certain points. We utilize normalized saliency
distribution S of the whole point cloud to weight semantic loss by:

\ L
[sem _ N Z l;em * eXp (§,) &)
=1

where i is the index of point; £%" is saliency weighted loss for segmentation; 7" denotes
the semantic loss of point p;. This equation shows that, if saliency score of point p; is closer



DING AND IMAMOGLU ET AL.: SALLIDAR FOR POINT CLOUD UNDERSTANDING 7
Table 1: Results of SalLiDAR models with different backbones on FordSaliency dataset.

\ Regression Classification

[ CCt SsIMf KLD] | CCt SIMf KLD]
SalLiDAR w/ PointNet 0.3465 0.6655 0.4263 | 0.3636 0.6584 0.4892

SalLiDAR w/ RandLA-Net | 0.6368 0.7784 0.1688 | 0.6381 0.7377 0.2282

SalLiDAR w/ Cylinder3D | 0.6760 0.7854 0.1574 | 0.6790 0.7834 0.1606

Model

to 1, the semantic loss of p; would be weighted more; otherwise, the semantic loss would
be kept without attentive weighting. It should be noted that attention guided optimization
process is applied only at training stage; therefore, in this case, saliency prediction is not
needed during inference.

2) SalLiDAR-II: Saliency distribution as a descriptor for semantic module. Several
previous RGB saliency approaches [33, 34] have shown that the prediction of saliency can
be adopted as an input descriptor to improve the model performance. Similarly, it could
be regarded as a descriptor of the scene since it represents the prior knowledge of saliency
distribution for the whole LiDAR scan. Inspired by the works in [33, 34], we take the
predicted saliency values as an extra input descriptor for the semantic segmentation branch.
In Figure 2, SalLiDAR-II is the model without the module of point-wise attention guided
loss. In this model, the semantic module could learn saliency features for each point, which
would be helpful to improve the performance of 3D semantic segmentation.

3) SalLiDAR-III: Saliency distribution as a descriptor and attentive loss guiding for se-
mantic segmentation. In this model, we do not only combine the saliency distribution to the
input of the semantic module, but also apply the point-wise attention guided loss to optimize
the semantic segmentation stream. Combining both attention guided loss (SalLiDAR-I) and
using saliency as descriptor (SalLiDAR-II), SalLiDAR-III is given in Figure 2.

4 Experimental Analysis

4.1 Experimental Setup

Implementation Details: We employ PointNet [23], RandLA-Net [10], and Cylinder3D
[44] models as feature extractors. For the point cloud saliency models with classification
modelling, the number of class K is 16. Experiments of K={8,16,32,64,128,256} are dis-
cussed in ablation study. For point cloud saliency loss of equation 4, we use y=1, 6=0.1,
1n=0.025 by following the studies [4, 6].

LiDAR FordSaliency Dataset: The large-scale FordCampus [21] dataset is composed of
datasetl (3817 scans) and dataset2 (6103 scans) of outdoor driving scenes. All the Velodyne
LiDAR scans have point coordinates (x,y,z) and corresponding images of 5 omnidirectional
camera views. Based on the data of FordCampus [21] dataset, we build a point cloud saliency
dataset (namely FordSaliency) for the training of LiDAR-based saliency models. We select
five state-of-the-art RGB saliency models as pseudo-annotators from MIT Saliency Bench-
mark!. These models include SAM [2], SalFBNet [4], MSI-Net [16], DeepGazellE [17],
and SalGAN [20], which were pre-trained on RGB saliency datasets. We create saliency
annotations of all LiDAR scans as described in Section 3.2. We utilize dataset] and dataset2
of FordSaliency as validation set and training set, respectively.

SemanticKITTI Dataset: SemanticKITTI [1] dataset is a well-known large-scale dataset
for point cloud semantic segmentation. This dataset consist of 22 Velodyne driving-scene

https://saliency.tuebingen.ai/results.html
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Figure 3: Point cloud saliency prediction results of SalLiDAR model with different back-
bones on FordSaliency dataset.

sequences, which is split into training set (sequences 00-07 and 09-10), validation set (se-
quence 08), and testing set (sequences 11-21). In total, there are 43,552 LiDAR scans and
19 semantic categories (e.g. car, road, building, etc.) [1].

Evaluation Metrics: We use popular saliency metrics® including Correlation Coefficient
(CC), Similarity (SIM), and Kullback-Leibler Divergence (KLD) to evaluate the perfor-
mance of point cloud saliency model. For LiDAR semantic segmentation, we adopt mean
Intersection-over-Union (mloU) as evaluation metric following the previous studies [10, 44].

4.2 Results on FordSaliency Dataset

We compare the performance of LiDAR-based saliency models with different feature extrac-
tors on our FordSaliency dataset. In Figure 3, We show the visualization results of SalLiDAR
models with different backbones on FordSaliency validation set. In Table 1, we report the
quantitative performance of these models on FordSaliency validation set. From Figure 3
and Table 1, we can observe that although the saliency annotations are pseudo-labels, all
these LiDAR-based models are able to learn the discriminative point cloud saliency repre-
sentations for saliency distribution prediction. Additionally, the models with classification
and regression modelling manners can achieve competitive performance of saliency predic-
tion, and the performance difference is small. It shows that these two modelling ways can
be adopted to predict the point cloud saliency distribution. On the other hand, the model
with Cylinder3D backbone can predict better saliency distribution than the model with other
backbones. The models with RandLA-Net backbone and PointNet backbone can learn the
correlation and similarity features from point cloud saliency annotations, as evidenced by
the CC, SIM and KLD values in Table 1. However, the prediction of the model with Cylin-
der3D backbone can achieve higher CC, SIM, and lower KLD performance. It suggests that

’https://saliency.tuebingen.ai/evaluation.html


Citation
Citation
{Behley, Garbade, Milioto, Quenzel, Behnke, Stachniss, and Gall} 2019

Citation
Citation
{Hu, Yang, Xie, Rosa, Guo, Wang, Trigoni, and Markham} 2020

Citation
Citation
{Zhu, Zhou, Wang, Hong, Li, Ma, Li, Yang, and Lin} 2021

https://saliency.tuebingen.ai/evaluation.html

DING AND IMAMOGLU ET AL.: SALLIDAR FOR POINT CLOUD UNDERSTANDING 9

Groundtruth of Semantic Prediction of Semantic Prediction of Saliency Prediction of Saliency Prediction of
Semantic Segmentation Cylinder3D+SalLiDAR RandLA-Net+SalLiDAR Cylinder3D+SalLiDAR RandLA-Net+SalLiDAR

F s ;s | § A U LY T

Wooe Mo voce  [lroorce Wk WS, e Wlbocis Wlinoorocis [l

" o m
parking [ @sicewatk Wgroun  [buiding  tence [ fvegetation  [ftruck terrain  pole "

Figure 4: Visualization results of proposed segmentation models on SemanticKITTI [1].

Table 2: Performance comparison of proposed models and existing LiDAR segmentation
methods on SemanticKITTI [1] test set. Results are obtained from leaderboard and literature.

2 2 2

i % % §. 5 =4 g B0 5 ;’J

) =< g g I = ] ) &

Methods mou 5 £ E f £ 2 £ & § & % % 2 & ¢ E 5 & E
Darknets3 [1] 199 864 245 327 255 226 362 336 47 918 648 746 279 841 550 783 501 G640 389 522
RangeNet-++ [19] 522 914 257 344 257 230 383 388 48 OLS 650 752 27.8 874 586 80.5 S55.1 G646 479 559
RandLA-Net [10] 539 942 260 258 401 389 492 482 72 907 603 737 204 869 563 814 613 G668 492 47.7
PolarNet [39] 543 938 403 301 229 285 432 402 56 908 G617 744 217 900 613 840 655 678 518 S57.5
SqueezeSegv3 [35] 559 925 387 365 206 330 456 462 20 917 634 748 264 890 594 820 587 654 496 589
Salsanext [3] 505 919 483 386 389 319 602 590 194 917 637 758 291 902 642 818 636 665 543 6.1
KPConv [29] 588 960 320 425 334 443 615 616 118 888 613 727 316 950 642 848 692 69.1 564 474
FusionNet [38] 613 953 475 377 418 345 595 568 119 918 688 771 308 925 694 845 698 685 604 665
KPRNet [15] 631 955 541 479 236 426 659 650 165 932 739 806 302 917 684 857 698 712 587 641
TORANDONet [7] 631 942 557 481 400 382 636 601 349 897 663 745 287 913 656 856 670 715 580 659
SPVNAS [27] 664 973 515 508 598 588 657 652 437 902 676 752 169 913 659 861 734 710 642 669
Cylinder3D [44] 678 971 676 640 590 586 739 679 360 914 651 755 323 910 665 854 718 685 626 656
PVKD [9] 712 970 679 693 535 602 751 735 505 918 709 775 410 924 694 865 738 719 649 658

* RandLA-Net (baseline) 525 938 270 220 36.1 381 499 425 64 907 588 741 115 889 574 798 612 655 499 46.0
RandLA-Net+SalLiDAR-I 540 941 282 244 454 372 483 481 59 89.1 59.7 724 219 875 562 8L7 61.6 68.6 49.7 465
RandLA-Net+SalLiDAR-II 534 938 30.2 243 379 375 501 455 95 899 60.1 739 138 873 566 813 607 672 48.0 478
RandLA-Net+SalLiDAR-III  53.8 944 289 266 355 397 470 472 113 90.0 60.5 737 162 883 568 813 609 678 50.7 458
# Cylinder3D (baseline) 717 97.1 69.6 720 558 624 762 778 467 912 698 762 409 926 702 867 738 716 652 663
Cylinder3D+SalLiDAR-I 724 972 700 731 597 63.0 777 784 504 913 705 763 413 926 699 865 734 708 662 664
Cylinder3D+SalLiDAR-II ~ 72.0 972 69.0 72.0 598 628 76.6 773 481 917 709 772 416 925 694 864 734 712 655 653
Cylinder3D+SalLiDAR-IIT 721 972 692 721 60.6 63.0 775 777 478 918 70.7 774 411 926 695 864 736 7.1 656 654
*# PyTorch implementation of RandLA-Net [10], which is available at: ht tps: //github.com/tsunghan-wu/RandLA-Net-pytorch.
# The results are obtained from the released version of Cylinder3D model [44] from the work in [9]: https://github.com/cardwing/Codes—for-PVKD.
Best performance results are shown in red color (publications before July 2022). Improved performance results of proposed model against the baseline are shown in bold.

the model with voxel-based partition (e.g. 3D Cylinder) could learn more powerful saliency
representations than point-based models.

4.3 Results on SemanticKITTI Dataset

We report the LiDAR semantic segmentation performance on SemanticKITTI test set in Ta-
ble 2. Note that all the testing performance results of Table 2 are taken from the literature
and the benchmark leaderboard® of SemanticKITTI [1] dataset. As shown in Table 1, the
SalLiDAR of regression models achieve better results than classification models. Thus we
leverage regression based SalLiDAR models in Table 2. Comparing to the baselines, all the
models with SalLiDAR obtain better mloU results. The proposed method also improves
the segmentation performance on specific classes, since the combination of our predicted
saliency distribution makes the model attentive to these categories, such as car, truck, and
parking. Furthermore, the Cylinder3D model with SalLiDAR achieves better segmenta-

Shttp://www.semantic-kitti.org/tasks.html#semseg
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tion results than the RandLA-Net with SalLiDAR. It shows that the semantic segmentation
model with better saliency prediction could provide more attentive information or features
to improve the model performance. Especially, these experimental results demonstrate that
the performance of LiDAR semantic segmentation models can be improved by proposed
saliency distribution integration and point-wise attention guided loss. These comparison re-
sults validate the effectiveness of the pre-trained point cloud saliency models, although they
are trained on FordSaliency dataset with pseudo-annotations.

4.4 Complexity Analysis

Regarding SalLiDAR-II and III, complexity is doubled compared to its backbone model
because use of saliency as input or feature descriptor requires saliency prediction network
to be processed. But it is the case if only saliency is used as input descriptor. On the other
hand, it should be noted that cost of SalLiDAR-I is doubled only during the training phase
while the inference complexity is the same as its backbone/original model, as it is only
used for optimizing the backbone model with a saliency guided loss. In addition, saliency
concept regardless of in 2D or 3D vision, brings extra cost similar to other image processing
techniques (e.g. normal estimation). But, the potential benefits are also very promising. As
our results (see Table 2) demonstrates, the proposed method improves the accuracy of many
categories (e.g. truck, person) compared with the baseline model.

5 Conclusion

In this paper, we propose a practical solution for point cloud saliency prediction. We first
build a point cloud saliency dataset (FordSaliency) for the training of LiDAR-based saliency
models. We then employ existing LiDAR-based models as backbones of saliency feature
extraction to learn the saliency distribution on point clouds. After obtaining the learned
saliency embedding features, we calculate saliency score map by utilizing two different type
of predictors including classification and regression. To demonstrate the effectiveness of
the point cloud saliency models trained on FordSaliency dataset, we design a two-stream
semantic segmentation model by combing saliency representations and semantic features.
Extensive experimental results on FordSaliency dataset show that saliency distribution could
be transferred from color images to point clouds effectively. Experiments on SemanticKITTI
dataset also confirm that utilizing point cloud saliency information has a high potential to
improve the 3D scene understanding tasks with the 3D segmentation performance gain.
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