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Proposed Framework of Image-to-LIDAR Saliency Knowledge Transfer.
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Cylinder3D+SalLiDAR-I 724 97.2 70.0 73.1 359.7 63.0 777 784 504 913 705 763 413 92,6 699 865 734 708 66.2 664
Cylinder3D+SalLiDAR-II 720 97.2 690 720 598 628 76.6 773 481 917 709 772 41.6 925 694 864 734 712 655 653
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T The results are obtained from the released version of Cylinder3D model [1] from the work in [32]: https://github.com/cardwing/Codes—for—PVKD.
Best performance results are shown in red color (publications before July 2022). Improved performance results of proposed model against the baseline are shown in bold.
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