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1 Introdution of Online-CBST
This section will introduce the Online-CBST algorithm which is presented by MFA [1] in
detail. CBST [2] is a classic class-balanced pseudo-label selecting strategy. It sorts all
pixels according to the softmax confidence and selects the top r of the pixels based on the
confidence value as pseudo label. The select ratio r and the pseudo labels are updated by
stage. However, the CBST strategy is designed for offline pseudo label selection and is not
suitable in online pseudo label setting. Therefore, MFA presents the Online-CBST algorithm
for batch-level. It applies the CBST algorithm on the batch data and the select ratio r is
updated by iteration. The formulation for updating the select ratio r can be written as:

r = r0 +(
ncur

nmax
)p(rmax − r0) (1)

where r0, rmax, nmax is the predefined initial select ratio, max select ratio and max train
iteration respectively. ncur is the current train iteration. p is the hyperparameter to control
the growth of r. In our experiments, r0 and rmax is set as 0.2 and 0.75 respectively for online
pseudo label part. While for offline pseudo label updating, r0 and rmax is set as 0.4 and 0.95
respectively. Besides, p is set as 1.1. The Algorithm. 1 shows more details for Online-CBST.

Algorithm 1: Online-CBST Algorithm
# Online-CBST algorithm
def get_threshold(logits, r, n, num_classes):

# logits: model output
# r: select ratio, n: current iteration
# num_classes: the number of classes in this dataset
scores = softmax(logits)
pred_prob = max(scores, dim=1)
pred_label = argmax(scores, dim=1)
threshold = []
for c in range(num_classes)

x = pred_prob[pred_label == c]
cls_num = len(x)
if cls_num == 0: continue
threshold.apend(np.percentile(x, (1 - valid_thresh) * 100))

r = update(r, n) # update the select ratio according to Eq.1
return threshold, r
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components mIoU
WarmUp FDA Warmup 46.2

Baseline

ST-MT sce
loss

F2W
operation mIoU

✓ 53.9
✓ ✓ 54.8
✓ ✓ ✓ 55.0

TOPLU

high-confidence
acceptance

inconsistent
discard

consistent
acceptance mIoU

✓ 56.5
✓ ✓ 56.8
✓ ✓ ✓ 56.9

Table 1: Ablation study of each component for more detail.

2 Supplemental Experiments
Ablation studies of our baseline. To further study more components in our DUDA, this
section will bring more ablation studies for GTA5-to-Cityscapes benchmark. Firstly, we
analyse the components that build our baseline. The “Baseline” item in Table. 1 shows the
effectiveness of mean-teacher framework with consistency loss, sce loss and full-to-weak
operation. FDA is used as a warmup method firstly and achieves 46.2 mIoU. Then the
naive self-training and mean-teacher framework with consistency loss achieve 53.9 mIoU.
The noisy robust sce loss further brings 0.9 mIoU improvement and we achieve 54.8 mIoU.
Finally. we add full-to-weak operation, and the model arrives at 55.0 mIoU.

Ablation studies of TOPLU. Secondly, we analyse every step in our purposed TOPLU
algorithm. The “TOPLU” item in Table. 1 shows the effectiveness of all three steps in our
purpose TOPLU algorithm. We can observe that the high confidence acceptance step im-
proves the performance most. We believe this is because the performance improvement
during training corrects some mislabelled pixels in the initial pseudo label. Our designed
inconsistency discard step and consistency accept step also bring some performance im-
provement. Especially, the inconsistency discard step brings 0.3 mIoU gain based on the
first step, it proves the temporal inconsistency information is helpful to the selection of noise
labels.

3 Results Visualization
In this section, more results will be visualized. Figure. 1 shows the predicted result of the
valid set for GTA5-to-Cityscapes benchmark. For SYNTHIA-to-Cityscapes benchmark, our
DUDA also performs well. Figure. 2 provides a visualization of the updated results of of-
fline pseudo labels. Figure. 3 shows the predicted results of the valid set for SYNTHIA-
to-Cityscapes benchmark. We can observe that our DUDA produce visible improvement
comparing with the FDA warmup model. In addition, the effect of noise label correction is
also very obvious.
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Figure 1: The predicted results of our DUDA for GTA5-to-Cityscapes benchmark. The first
row is the valid images, the second and third rows is the FDA warmup results and our DUDA
results. The last row is the ground truth.

Figure 2: The offline pseudo label update results for SYNTHIA-to-Cityscapes benchmark.
The first row is the initial pseudo label generated by CBST. The second and third rows is the
updated results and ground truth.

Figure 3: The predicted results of our DUDA for SYNTHIA-to-Cityscapes benchmark. The
first row is the valid images, the second and third rows is the FDA warmup results and our
DUDA results. The last row is the ground truth.



138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

4 AUTHOR(S): ONLINE AND OFFLINE DUAL DOMAIN ADAPTION

References
[1] Kai Zhang, Yifan Sun, Rui Wang, Haichang Li, and Xiaohui Hu. Multiple fusion adap-

tation: A strong framework for unsupervised semantic segmentation adaptation. In The
British Machine Vision Conference (BMVC), 2021.

[2] Yang Zou, Zhiding Yu, BVK Vijaya Kumar, and Jinsong Wang. Unsupervised domain
adaptation for semantic segmentation via class-balanced self-training. In Proceedings of
the European conference on computer vision (ECCV), pages 289–305, 2018.


