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Abstract

Addressing human image matting without trimap is very challenging. The latest
methods rely on estimating a segmentation map or a pseudo trimap to constrain the mat-
ting process. However, their matting accuracy typically affects by the errors in these
auxiliary maps. Motivated by recent flaw correction approaches, we propose a novel
neural approach to address this problem: We first train a model to directly compute an
initial matte, of which the errors are further detected by a flaw detector and corrected
by a refinement process. Our method, named Semantics-Adding Flaw-Erasing network
(SAFE-Net), has two novel modules: a Semantic Addition module (SAM) to enrich
matting features with human semantics via an attention mechanism and a Flaw Elimi-
nation module (FEM) to correct errors in the defective matte regions. To facilitate the
learning process, we have further constructed a large human matting dataset containing
4,729 unique foregrounds with fine annotations. Extensive experiments demonstrate that
SAFE-Net outperforms existing trimap-free human image matting methods.

1 Introduction
Semantic human matting aims to accurately separate the humans from a given image . It
is a task with many practical applications, e.g., image composition. Given an RGB im-
age as input, human matting can be divided into two subtasks: foreground prediction and
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(a) Input image (b) Pseudo trimap       (c) Matte of (b) (d) Ground truth (e) Our initial matte (f) Our final matte

Figure 1: Limitations of the pseudo trimap based human matting approach. Given an input
image (a), a state-of-the-art pseudo trimap based method [21] would predict a pseudo trimap
first (b) and then an alpha matte (c). However, errors appearing in the pseudo trimap dete-
riorate the alpha matte prediction. Our approach first predicts an initial alpha matte (e), to
which we then apply a flaw detector for detecting and correcting errors to produce our matte
(f).

transparency (or foreground probability) estimation. Modeling these two subtasks simul-
taneously can easily result in incomplete foregrounds and inaccurate transparency due to
the interference between the semantic information used for foreground partitioning and the
appearance cues used for transparency estimation. Previous methods typically require the
user to provide an additional trimap as a priori to help obtain the matte from the input RGB
image. These trimap-based methods simplify the matting problem to estimating only the
transparency within the unknown area of the trimap. However, the requirement of creating a
trimap limits the matting task to non-realtime applications only. Besides, it may not be easy
for a non-expert user to create an accurate trimap.

Some recent methods [6, 21] propose to predict the alpha matte without pre-defined
trimaps. Instead, they first predict a psuedo trimap, and then perform the trimap-based
matting procedure. However, there are two major problems of using the pseudo trimap.
First, it is challenging to generate a high-quality pseudo trimap for two reasons: (1) A di-
rect mapping between the transparency regions and the semantics of the surrounding fore-
ground/background pixels does not exist; (2) The optimized parameters of morphological
processing (i.e., erosion and dilation, which are used to generate the extra annotations for
the pseudo trimap prediction), should vary according to the proportion of the foreground
region in the image but are fixed in existing methods. Second, erroneous labelling in the
prior pseudo trimap can greatly affect the quality of the predicted alpha matte (as shown in
Figure 1(b, c)),as a mistaken partition in a certain pseudo trimap region may misguide the
alpha prediction process in the corresponding matte region.

Recently, a flaw detection method for semi-supervised learning is proposed in [16] . It
minimizes the pixel-wise flaw of the feedforward result to achieve a better performance.
Inspired by this work, we propose in this paper an iterative semantics-adding flaw-erasing
network (SAFE-Net) for semantic human matting. SAFE-Net predicts an initial alpha matte,
which is then refined by an iterative refinement process under the guidance of a flaw detector.
Specifically, we apply a single encoder-decoder network to predict the initial alpha matte. We
then iteratively refine the alpha matte to obtain the final alpha matte (as shown in Figure 1(e,
f)) through a novel semantic addition module (SAM) and a novel flaw elimination module
(FEM). During refinement, SAM uses attention mechanisms to constrain the shallow details-
rich features to converge to a common semantic space for partitioning image regions, while
FEM aims to correct error predictions (detected by the flaw detector) in the alpha matte.

The lack of large-scale datasets with high-quality annotations seriously impedes the de-
velopment of the human matting task. Existing public datasets are either small-scale [24, 33]
or coarsely labeled [29]. Although two large-scale human matting datasets have been cre-
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ated recently [6, 21], they are unavailable to the public. To address this limitation, we have
constructed a new dataset including 4,729 unique foregrounds with fine annotations.

In summary, the main contributions of this paper are as follows: (1) We propose a novel
method (SAFE-Net) for human image matting. SAFE-Net first predicts an initial alpha matte
and then iteratively detects and corrects its errors. (2) SAFE-Net contains two novel mod-
ules: SAM and FEM. While SAM enriches matting features with human semantics, FEM
corrects the prediction errors based on a flaw detector and the enriched matting features.
(3) We build a large human matting dataset that contains 4,729 unique foregrounds with
high-quality annotations, to facilitate the learning of matte representations. (4) We conduct
extensive experiments to verify the effectiveness of the proposed SAFE-Net, demonstrating
its advantages over the existing trimap-free human matting methods.

2 Related Works
Natural Image Matting estimates the opacity of objects in natural images. Previous meth-
ods typically take an auxiliary trimap as a semantic priori and focus only on transparency
estimation. These methods can be classified into two categories: sampling-based meth-
ods [7, 8, 9, 11, 13, 14, 26] and affinity-based methods [1, 2, 3, 5, 10, 18, 19]. Both kinds
of methods only consider low-level pixel properties, such as the color, texture and intensity,
without considering high-level semantic information. Driven by the rapid development of
CNNs, many learning-based methods are proposed that introduce high-level semantic con-
text into the natural image matting task. Xu et al. [33] propose a fully convolutional frame-
work with a large-scale dataset for image matting, which is a milestone work at the time.
Cai et al. [4] and Hou and Liu [12] treat matting as a multi-task learning problem. Lu et
al. [22] design a network to generate indices to guide pooling and upsampling, which avoids
the detail loss caused by pooling. Sun et al. [30] propose to first generate a semantic trimap
from the input trimap, and then exploit the semantics for matting. Some methods propose
to replace the trimap with other inputs to constrain the matting process, i.e., segmentation
mask [35] and background image without matting target [20, 28]. However, all these meth-
ods require additional inputs, which may limits them in real-time applications. To address
this limitation, some recent methods [15, 24, 34, 36] directly predict the alpha matte without
using trimaps but they often produce inaccurate mattes.
Semantic Human Matting has attracted extensive research interests recently. Unlike nat-
ural image matting that covers diverse object categories, human matting only focuses on
extracting humans from the input images. It generates an alpha matte for the humans in
the foreground of the image, especially for their fine-grained details, such as hairs. Several
learning-based methods have been proposed for semantic human matting in recent years.
Shen et al. [29] propose a semi-deep portrait matting method. However, due to the use of
a shape prior, their model can only apply to half-length portraits. Chen et al. [6] utilize
a segmentation network to generate low-resolution segmentation map to guide the matting
process. Liu et al. [21] propose a coupled pipeline with three encoder-decoder networks.
However, the coarse annotation produces coarse prediction, which misleads the alpha matte
prediction in the last network.

Different from the above methods, our SAFE-Net does not apply a segmentation-matting
pipeline. Instead, we first predict an initial alpha matte directly from the input image. Since
this initial matte may contain errors, we then iteratively correct its errors to produce the
output matte.

Citation
Citation
{Chen, Ge, Xu, Zhang, Yang, and Gai} 2018

Citation
Citation
{Liu, Yao, Hou, Cui, Xie, Zhang, and Hua} 2020

Citation
Citation
{Chuang, Curless, Salesin, and Szeliski} 2001

Citation
Citation
{Feng, Liang, and Zhang} 2016

Citation
Citation
{Gastal and Oliveira} 2010

Citation
Citation
{He, Rhemann, Rother, Tang, and Sun} 2011

Citation
Citation
{Johnson, Varnousfaderani, Cholakkal, and Rajan} 2016

Citation
Citation
{Karacan, Erdem, and Erdem} 2015

Citation
Citation
{Ruzon and Tomasi} 2000

Citation
Citation
{Aksoy, Ozanprotect unhbox voidb@x protect penalty @M  {}Aydin, and Pollefeys} 2017

Citation
Citation
{Aksoy, Oh, Paris, Pollefeys, and Matusik} 2018

Citation
Citation
{Bai and Sapiro} 2007

Citation
Citation
{Chen, Li, and Tang} 2013

Citation
Citation
{Grady, Schiwietz, Aharon, and Westermann} 2005

Citation
Citation
{Levin, Lischinski, and Weiss} 2007

Citation
Citation
{Levin, Rav-Acha, and Lischinski} 2008

Citation
Citation
{Xu, Price, Cohen, and Huang} 2017

Citation
Citation
{Cai, Zhang, Fan, Huang, Liu, Liu, Liu, Wang, and Sun} 2019

Citation
Citation
{Hou and Liu} 2019

Citation
Citation
{Lu, Dai, Shen, and Xu} 2019

Citation
Citation
{Sun, Tang, and Tai} 2021

Citation
Citation
{Yu, Zhang, Zhang, Wang, Lin, Xu, Bai, and Yuille} 2021

Citation
Citation
{Lin, Ryabtsev, Sengupta, Curless, Seitz, and Kemelmacher-Shlizerman} 2021

Citation
Citation
{Sengupta, Jayaram, Curless, Seitz, and Kemelmacher-Shlizerman} 2020

Citation
Citation
{Ke, Li, Zhou, Wu, Mao, Yan, and Lau} 2020{}

Citation
Citation
{Qiao, Liu, Yang, Zhou, Xu, Zhang, and Wei} 2020

Citation
Citation
{Yang, Xu, Chen, He, Yin, and Lau} 2018

Citation
Citation
{Zhang, Gong, Fan, Ren, Huang, Bao, and Xu} 2019

Citation
Citation
{Shen, Tao, Gao, Zhou, and Jia} 2016

Citation
Citation
{Chen, Ge, Xu, Zhang, Yang, and Gai} 2018

Citation
Citation
{Liu, Yao, Hou, Cui, Xie, Zhang, and Hua} 2020



4 SUN, KE, ET AL.: SAFE-NET FOR SEMANTIC HUMAN MATTING

Skip connection

FM



Semantic Addition Module

Flaw Elimination Module

E1



Flaw detector

Backbone Network

𝛼0

Figure 2: Architecture of the proposed method. Our network consists of a backbone network,
a semantic addition module (SAM), and a flaw elimination module (FEM). The network
predicts an initial alpha matte α0 using the backbone network, and it then predicts a first
refined alpha matte which corrects the erroneous regions in the initial alpha matte based on
human semantic context learning and the guidance of the flaw detector. We can then feed the
first refined alpha matte to SAM and FEM multiple times, so that the matting performance
will further improve.

3 Our Method

As shown in Figure 2, our human matting pipeline consists of three components: a backbone
network, a semantic addition module (SAM), and a flaw elimination module (FEM). Given
an input image, the backbone network first produces an initial alpha matte. This initial matte
is then fed into SAM to enhance the semantics. Next, FEM takes the initial matte and the
semantic-enhanced features to predict the first refined alpha matte. The first refined alpha
can then iteratively feed into SAM and FEM, and finally we have an output alpha matte. We
explain our method in details below.

3.1 Backbone Network

Our backbone network is based on an auto-encoder architecture. We adopt a lightweight
MobileNetV2 [27] model as the encoder E. Given an input image I, the encoder outputs a
group of feature maps after each convolutional block. We integrate them as multi-scale fea-
ture maps and denote them by (E1,E2,E3,E4,E5), where the subscripts represent the indices
of the convolution blocks. The resolution of these feature maps gradually decreases, i.e., E1
has the largest spatial resolution while E5 has the smallest one. The decoder D consists of
several convolutional layers and upsampling operations. We denote the side outputs of five
decoder layers as (D1,D2,D3,D4,D5). To reuse the appearance details from E, we apply
skip connections to transfer its feature maps to D. The backbone network produces an initial
alpha matte. However, both semantics and details in α0 are unsatisfactory, since it is difficult
for a single backbone network to handle both localization information and appearance cues
well simultaneously. To improve α0, we propose to correct its flaw semantics as below.
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Figure 3: Semantic addition module (left) and Flaw Elimination Module (right).

3.2 Semantic Addition Module (SAM)
As analysed in [37], the feature map of each channel at the last convolutional layer E5 usu-
ally highlights the discriminative class-specific regions for category identification. A global
average pooling on E5 and further usage of fully-connected layers can squeeze global spatial
information into a vector called importance descriptor, of which each element represents the
confidence of belonging to a specific class. In the human matting task, the foreground only
contains the people category. Thus, this descriptor can embody a strong inherent pattern,
that is, the corresponding elements of people have the highest responses. Therefore, we use
the importance descriptor [37] as a channel-wise attention vector Attc ∈ R1×1×C to constrain
the semantically ambiguous Fin, which is obtained by operating a convolution (with kernel
size of 3) on the concatenation of α0 and I. Benefited from applying Attc, Fin will con-
verge to a state where the human-related class-specific channels have the most significant
contributions.

Unlike the sharp foreground boundaries (with pixel values of either 0 or 1) predicted by
semantic segmentation, the output of human matting requires a smooth transition (with pixel
values ranging between 0 to 1) on human boundaries. Hence, we reinforce the effect of Fin
to ensure the spatial smoothness of the features and avoid losing details as much as possible.
This procedure is defined as:

Attc = σ(W∗(δ (W∗(AvgPooling(E5))))),

F̃in,c =W∗(Attc ⊗Fin +Fin),
(1)

where W∗(·) denotes a convolution layer, δ (·) refers to the ReLU function, σ(·) indicates a
sigmoid function, and ⊗ refers to the element-wise multiplication.

In order to completely extract the humans, we regulate the spatial distribution of the
features. We compute an alpha-guided spatial attention map Atts = σ(W∗(D5)) ∈ RW×H×1,
which is supervised by the ground truth alpha matte. Atts and F̃in,c are then multiplied in an
element-wise manner to weight the features spatially. For the reason mentioned above, we
also adopt a residual structure here to enhance the appearance information and maintain the
global semantic context at the same time. This operation can be define as:

F̃in,c,s =W∗(Atts ⊗ F̃in,c + F̃in,c). (2)

Figure 3 (left) shows the overall structure of SAM.
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3.3 Flaw Elimination Module (FEM)
Through explicitly emphasizing the human-related semantics in the low-level features via
SAM, we improve the accuracy of figure extraction. However, some important details, such
as hairs, may still not be subtly characterized due to the coarseness of the semantic-biased
representation. Hence, we propose to recover these important details by using a flaw map
FM to indicates the inferior pixels in α0.

The discriminator-like flaw detector [16] can predict pixel-wise flaw probabilities as
FM. The flaw detector was to repair errors through minimizing the values in the flaw
map, i.e., the map of flaw probabilities. In our pipeline, we modify the flaw detector for a
different function. Instead of minimizing the flaw map, we use it as an indicator of inferior
pixels. We first concatenate the input image I and the initial alpha α0 as the input to the flaw
detector to produce FM. We then apply a convolutional layer (with kernel size of 3) on
FM to obtain FFM, and concatenate FFM with the side-output of the first convolutional
layer E1 and F̃in,c,s as:

F̃in,c,s,d =W∗(FFM⊚E1 ⊚ F̃in,c,s), (3)

where ⊚ denotes concatenation. With this operation, the detail of the inferior pixels indi-
cated by FM is purposefully enhanced. Finally, we feed the refined features F̃in,c,s,d to a
ConvLSTM [32] to further learn the spatial correlation between the features in different time
steps t. The detail of the inferior pixels indicated by FM can be enhanced via the operations
will provide in supplementary.

3.4 Loss Function
We leverage two losses to train our pipeline. One is the alpha prediction loss Ln

α . We use Ln
α

to measure the absolute difference between the ground truth alpha matte αg and the predicted
alpha matte αp, as:

Ln
α = γ

√(
αg −αn

p
)2

+ ε2, (4)

where ε is a small constant value. γ is a binary mask that is set to 4 in the unknown area and
1 otherwise. The purpose of γ is to let the alpha prediction loss pay more attention to the fine
details, e.g., the hair.

Both outputs of our network and the backbone network are supervised by an alpha pre-
diction loss, as:

Lα = L0
α +L1

α , (5)

where L0
α is the alpha prediction loss for the initial alpha matte α0 predicted by the backbone

network, and L1
α is the alpha prediction loss for the first refined alpha matte α1. This loss

can improve the quality of the initial alpha matte by repairing holes in the foreground and
reducing artifacts in the background.

In addition, in order to detect the flaw regions in the predicted alpha mattes, we train the
flaw detector by:

L f d =
1
2
(FM−FR)2 , (6)

where FR is the ground truth flaw map calculated according to [16]. We train the flaw
detector and the other parts alternately.

Citation
Citation
{Ke, Qiu, Li, Yan, and Lau} 2020{}

Citation
Citation
{Xingjian, Chen, Wang, Yeung, Wong, and Woo} 2015

Citation
Citation
{Ke, Qiu, Li, Yan, and Lau} 2020{}



SUN, KE, ET AL.: SAFE-NET FOR SEMANTIC HUMAN MATTING 7

Figure 4: Some examples in our dataset. The examples from the left to right are the example
of single frontal subset, single pose-varied subset and multiple subset, respectively

Image HATT DIM BSHM Ours GT
Figure 5: Qualitative comparison on the proposed dataset.

4 Human Matting Dataset
The lack of data is still a significant challenge for the semantic human matting task. Publicly
available datasets typically lack diversity of the foreground humans, e.g., the pose and the
number of people. Although some large-scale datasets have been proposed, they are publicly
available. Specifically, the most widely used natural image matting dataset [33] contains only
202 human images for training and 11 images for evaluation. And the humans-only subset
of Distinctions646 [24] contains 362 training and 11 test samples. Due to their small size,
these datasets cannot be used by itself for semantic human matting but as a supplement of
other datasets. Shen et al. [29] propose the first human matting dataset which contains 2,000
upper-body portraits with limited poses. Moreover, their annotations are coarsely labeled,
as they are generated by using traditional algorithms [5, 18], which have bias inevitably.
Later, Chen et al. [6] propose a human fashion dataset with 34K images for matting. Liu et
al. [21] propose a hybrid annotated dataset with 9,526 finely-annotated images and 10,597
coarsely annotated images. However, these two datasets are not publicly available. Hence,
we propose a dataset with a training set of 4,494 and a test set of 235 unique foregrounds
to address the data shortage problem in the area of semantic human matting. Supplementary
Table 1 will compare these datasets.

Compared with the existing datasets, our dataset has richer postures or headcounts in
each image. Based on the categories of posture and headcount, we split the dataset into
three subsets, namely, single frontal subset, single pose-varied subset, and multiple subset.
Supplementary Table 2 will show details of the three subsets of our dataset. The single
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frontal subset contains the portraits of a single person facing towards the camera, while the
single pose-varied subset contains the portraits of a single person with diverse types of human
postures, such as figures in profile or figures viewed from behind. As for the multiple subset,
it is the collection of some group photos. While the single frontal subsect is the largest of
the three subsets and contains a total of 2,283 images, the single pose-varied subset contains
a total of 2,011 images and the multiple subset contains a total of 435 images. We compose
the above foregrounds and fine annotated alpha mattes with background images. We use
OpenImages [17] and the SUN Database [31] as our background dataset for the composition.
OpenImages is a dataset of 9 million images with more than 600 object classes. The SUN
Database is a scene recognition benchmark with 899 categories and 130,519 images. Each
foreground image is composed with 10 randomly selected background images. However, we
skip the background images that contain human to avoid confusion. Some examples of the
three subsets are shown in Fig. 4.

5 Experiments

5.1 Experimental Setup

Data Augmentation. Most existing matting methods crop a high-resolution input image into
low-resolution patches. However, this causes the inputs to have incomplete semantics during
the training phrase, which severely affects the accuracy of feature extraction. Therefore,
we propose a data augmentation strategy to fully exploit the deep semantic information of
the input image. Our data augmentation strategy is as follows. We first properly scale the
image and its corresponding ground truth with a random scaling factor. We then localize
the bounding box of the human foreground using its corresponding ground truth. In order to
guarantee that the image patch contains human head and part of the body, we vertically shift
the center of the bounding box upward from the center of the image to a quarter of the image.
In addition, we set the top of the cropped patch higher than that of the bounding box of the
human foreground. To balance between semantic completeness and computational cost, we
crop one 512×512 patch from each image. Finally, we randomly flip the patch and feed it
to our network for training.

Evaluation Metrics. We adopt four widely used evaluation metrics to verify the perfor-
mance of various models, including mean square error (MSE), sum of the absolution dif-
ference (SAD), Gradient error and Connectivity error. The first two metrics are objective
indicators, and the last two metrics [25] are perceptual metrics to represent human subjective
judgements. Lower values of these metrics correspond to a higher quality predicted alpha
matte. Given a alpha matte with continuous values normalized to the range of 0 and 1, we
compute these evaluation metrics with its corresponding ground truth. MSE, Gradient error
and Connectivity error are averaged over the whole image.

Implementation Details. Our method is implemented using PyTorch toolbox [23], and
trained on a PC with 2 NVIDIA TITAN RTX GPU. The flaw detector is trained using the
Adam optimizer with learning rate initially set to 0.0001, which gradually decreases by a
polynomial decay with power of 0.9. The other part of our model is trained in an end-to-end
manner using the SGD optimizer with a fixed learning rate of 0.1. We trained our model 50
epochs with a batch size of 16. The flaw detector and the the other part of our model are
trained alternately. During testing, we only input images and perform feed-forward inference

Citation
Citation
{Krasin, Duerig, Alldrin, Ferrari, Abu-El-Haija, Kuznetsova, Rom, Uijlings, Popov, Kamali, Malloci, Pont-Tuset, Veit, Belongie, Gomes, Gupta, Sun, Chechik, Cai, Feng, Narayanan, and Murphy} 2017

Citation
Citation
{Xiao, Hays, Ehinger, Oliva, and Torralba} 2010

Citation
Citation
{Rhemann, Rother, Wang, Gelautz, Kohli, and Rott} 2009

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, and Chintala} 2019



SUN, KE, ET AL.: SAFE-NET FOR SEMANTIC HUMAN MATTING 9

Method Addtional Input MSE↓ SAD↓ Grad↓ Conn↓
CF [18] Trimap 72.51 42.81 33.45 14.77

DIM [33] Trimap 28.36 14.23 15.85 4.916
SHM [6] - 68.58 31.98 25.15 10.37

HATT [24] - 33.85 15.08 15.18 5.203
BSHM [21] - 53.18 19.50 15.57 6.812

Backbone - 41.18 18.42 18.03 6.782
Ours - 28.81 12.06 11.90 4.280

Table 1: Quantitative results of different methods on the proposed dataset.

to output alpha matte predictions. The iteration procedure is stopped at iter t if the SAD
metric cannot be decreased further.

5.2 Performance Comparison

Since our method is trimap-free based, we compare it to two state-of-the-art trimap-free deep
semantic human matting methods, SHM [6] and BSHM [21], and one trimap-free deep natu-
ral image matting method HATT [24]. We attach the performance of one trimap-based deep
natural image matting method DIM [33], and one trimap-based non-deep natural image mat-
ting method CF [18] for reference. For a fair comparison, all deep learning based methods
are retrained on our dataset. We follow DIM to generate trimaps from the ground truth alpha
matte via dilation and erosion.

Quantitative Evaluation. Table 1 shows the evaluations on the proposed test set with 2,350
images. For the sake of readability, we use 1e−4, 1e−4, 1e−3 and 1e−3 to scale mean square
error (MSE), sum absolution difference (SAD), spatial gradient error (Grad), and connectiv-
ity error (Conn), respectively. All the metrics are the lower the better.

We can see that the proposed method consistently outperforms all trimap-free methods,
i.e., BSHM [21], SHM [6], and HATT [24] on all four evaluation metrics. This is because
BSHM [21] and SHM [6] rely on the segmentation-matting pipeline, where errors in the
predicted segmentation mask or pseudo trimap can significantly affect the subsequent matte
prediction. The HATT [24] exploits adversarial learning to fit the image-to-matte mapping in
a single stage, so it cannot correct the matte errors. Note that although DIM [29] (which is a
trimap-based method) performs better in terms of MSE, our method can produce comparable
results in terms of SAD, Connectivity error and Gradient error.

Method MSE↓ SAD↓
HATT [24] 32.19 9.93
BSHM [21] 23.34 8.22

Ours 11.93 5.00

Table 2: Quantitative results of
different methods on D646.

iter MSE↓ SAD↓
1 12.46 5.17
2 11.98 5.01
3 11.93 5.00

Table 3: Quantitative results of
different iteration on D646 dataset.

Table 2 shows the evaluations on the test set of D646 [24] dataset. Here, we use 1e−3 and
1e−3 to scale MSE and SAD respectively. It shows that our method outperforms HATT [24]
and BSHM [21] on the D646 dataset.
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Bonebone SAM FEM FEM* MSE↓ SAD↓

val

✓ 41.18 18.42
✓ ✓ 37.64 15.25
✓ ✓ ✓ 28.81 12.06
✓ ✓ ✓ 37.29 15.07

Table 4: Ablation study on the test set of our proposed dataset.

Ablation Studies. We perform ablation analysis over the main components of the SAFE-Net
and further investigate their importance and contributions. Table 4 shows the performance
improvements contributed by different structures in terms of MSE and SAD. We can see that
SAM and FEM can help significantly improve the performances. In addition, we use FEM*
to represent a variant of FEM, which shares the same structure as FEM but uses zeros map
instead of flaw map for guidance. We compare FEM with FEM* to validate the effectiveness
of the flaw map. Moreover, Table 3 shows that iterative refinement can improve matting
performance. iter t represents the result of the the t th refined alpha matte. We can see the
matting performance improves after each iteration of refinement.

Visual Comparison. In Fig. 5, we visualize some alpha mattes produced by different mat-
ting approaches to qualitatively evaluate their performances. The examples embody vari-
ous scenarios. Among the predicted alpha mattes, BSHM [6] (which is a non-trimap based
method) shows an incomplete shape of human, caused by an inferior prediction of the trimap
substitute, and HATT [24] shows unsatisfactory detail prediction. In contrast, our method
achieves accurate figure extraction and detail prediction, similar to those of the trimap-based
DIM [33].

In conclusion, these results indicate that our method can produce accurate alpha mattes
even without the trimap as additional input.

6 Conclusion

In this paper, we have proposed a novel semantics-adding flaw-erasing Network (SAFE-Net)
for semantic human matting. It first predicts an initial alpha matte with a single model. It
then strengthens human semantics and erases erroneous regions in the initial alpha matte. In
SAFE-Net, a backbone network is used to predict the initial alpha matte, and two novel mod-
ules (semantic addition module (SAM) and flaw elimination module (FEM)) are exquisitely
designed to predict a finer alpha matte from the initial matte. Experimental results have
shown that the proposed method performs favourably against the state-of-the-art methods.
In addition, we have also built a fine-annotated dataset for semantic human matting, which
contains 4,729 unique foregrounds.
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