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A Appendix

A.1 Model Details

In the experiments, we use the top-down model in [1] as the original model. Image features
are extracted with a Faster R-CNN [9] trained with attribute labels from the Visual Genome
dataset [5]. The polishing network consists of a top-down model and an encoder for the input
raw descriptions. The embedding vector of raw descriptions has a dimension of 512.
During training. The hyperparameters α and β in the sampling modules of the original
model is set to 0.7 and 0.1 respectively, chosen according to the studies in Tab. 4 in the
paper. Models are trained with Adam algorithm [4] with a learning rate starting from 5e−4,
batch size 32. The original model is trained with 100 epochs and polishing networks are
trained with 50 epochs. Both the original model and the polishing networks are trained on a
GeForce RTX 2080 GPU.
During inference. The polishing network is decoded using beam search with a small beam
size of 2.

A.2 Statistics of the Error Endings

Discussion. We count the number of descriptions ending with words (‘of’, ‘on’ , ‘in’, ‘with’,
‘a’) from different encoding methods on the m-RNN test split [7] on MS COCO dataset [6]
in Tab. 5 in the paper. Here we will discuss the statistics in more detail. In a normal
image caption generation process, we can manually filter these bad ending words through an
additional post-processing process. However, this post-processing requires a lot of manual
work. First, bad ending words are not limited to those we count. Moreover, similar errors
in descriptions do not only appear at the end of sentences. Repeated descriptions such as
“there is a cat and a cat” are common errors. It is intractable to deal with all these errors with
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manually defined rules. Therefore, in this paper, we forbid the post-processing and leave
this work to PN. We use the statistics of bad ending words as a probe to show the effect of
PN. To a certain extent this result can reflect the role of PN in correcting errors of generated
descriptions.

A.3 More Examples of Generated Descriptions
More examples on the m-RNN test split of MS COCO dataset generated by random sampling
methods (RS with temperature to = 0.7, top-s [2, 8] and top-p [3]) and corresponding refined
descriptions by applying PN are shown in Fig. A1 and A2. Sample size is 5.
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Figure A1: Examples of raw descriptions generated by random sampling (to = 0.7), top-s,
top-p and refined descriptions by PN on the m-RNN test split of MS COCO dataset.
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Figure A2: Examples of raw descriptions generated by random sampling (to = 0.7), top-s,
top-p and refined descriptions by PN on the m-RNN test split of MS COCO dataset.
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