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Abstract

Reconstruction of high-quality HDR images is at the core of modern computational
photography. Significant progress has been made with multi-frame HDR reconstruction
methods, producing high-resolution, rich and accurate colour reconstructions with high-
frequency details. However, they are still prone to fail in dynamic or largely over-exposed
scenes, where frame misalignment often results in visible ghosting artifacts. Recent
approaches attempt to alleviate this by utilizing an event-based camera (EBC), which
measures only binary changes of illuminations. Despite their desirable high temporal
resolution and dynamic range characteristics, such approaches have not outperformed
traditional multi-frame reconstruction methods, mainly due to the lack of colour infor-
mation and low-resolution sensors. In this paper, we propose to leverage both bracketed
LDR images and simultaneously captured events to obtain the best of both worlds: high-
quality RGB information from bracketed LDRs and complementary high frequency and
dynamic range information from events. We present a multi-modal end-to-end learning-
based HDR imaging system that fuses bracketed images and event modalities in the fea-
ture domain using attention and multi-scale spatial alignment modules. We propose a
novel event-to-image feature distillation module that learns to translate event features
into the image-feature space with self-supervision. Our framework exploits the higher
temporal resolution of events by sub-sampling the event streams using a sliding win-
dow, enriching our combined feature representation. Our proposed approach surpasses
state-of-the-art (SoTA) multi-frame HDR reconstruction methods using synthetic and
real events, with a 2dB and 1dB improvement in PSNR-L and PSNR-u on the HdM
HDR dataset, respectively.

1 Introduction

High dynamic range (HDR) imaging techniques extend the luminance range capturable be-
yond conventional or low dynamic range (LDR) cameras. The vision and graphics commu-
nities have developed numerous HDR strategies over recent years, summarized by [36, 39].
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Bracketed LDRs + Events Reconstructed HDR Image

Medium

Figure 1: Our learning-based method produces high-quality HDR images, leveraging brack-
eted LDRs and events. The two modalities provide complementary information; events: high
frequency and dynamic range, LDRs: colour and fine detail. Left: input LDR sequence with
different exposures (short, medium, long) and event stream, where the colour denotes event
polarity (red positive, blue negative). Right: input LDR reference and our HDR result.

Traditionally, HDR methods involve capturing multiple LDRs with varying exposure values
(bracketed exposures) and merging them with different weights to reconstruct an HDR im-
age [6]. The seminal work of [18] extends multi-frame fusion to dynamic scenes by curating
paired dynamic input LDRs with static ground truth HDR labels, and training end-to-end
deep neural networks. This paradigm has been very successful over recent years and now
defines the state-of-the-art in HDR reconstruction [21, 24]. However, these methods have
limitations intrinsic to the camera sensor and bracketing strategy: frames generally need to
be aligned to a reference frame due to sequential capturing. Finding frame correspondences
is challenging and can be affected by e.g. non-rigid motion or disoclussions, resulting in
motion-related artifacts. Furthermore, the dynamic range per LDR is limited; thus, each
exposure bracket will inevitably miss some parts of the scene (i.e. under- or over-exposed).
This is especially problematic for the reference frame, as alignment to areas that suffer infor-
mation loss is not well defined in terms of photometric loss. Other approaches reconstruct
from only a single LDR [19]; an ill-posed problem where texture details in poorly-exposed
regions are hallucinated from neighbouring areas or priors learned through neural networks
[8]. Multi-frame methods, however, continue to out-perform single image approaches [27].

Event-based cameras (EBC) have recently garnered significant attention from researchers
due to their unique properties distinct from conventional frame-based cameras. EBCs are
novel bio-inspired sensors presenting a paradigm shift in how visual information is acquired;
while a standard camera captures intensity images at a fixed frame rate, EBCs detect changes
in per-pixel log intensity L = log(I) (brightness) asynchronously. An event E; = (x;,y;,;, p;)
is triggered at pixel (x;,y;) at time ¢; when the brightness increment since the last event at
that pixel, i.e. AL(x;,y;,t;) = L(x;,yi,t;) — L(x;,vi,t; — At;) exceeds a contrast threshold +C,
i.e. AL(x;,yi,t;) = piC, where C > 0 and polarity p; € {+1,—1} is the sign of the brightness
change [10]. This enables very high temporal resolution capture (in the order of us), with
high dynamic range (140dB vs 60dB) and low power consumption, making them appeal-
ing for HDR applications [10]. Despite these advantages, EBCs generally have low spatial
resolution and typically only record grayscale information and thus have so far struggled to
produce high-resolution, colour-accurate and artifact-free image reconstructions.

In this work, we address these limitations by exploiting the strengths of each modality.
As Fig. | shows, we propose a multi-modal HDR imaging method combining bracketed ex-
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posures from a frame-based camera and high temporal resolution and dynamic range events
from an EBC. The main contributions of this paper are: (1) A multi-modal architecture that
combines bracketed LDRs and events trained in an end-to-end manner. (2) An event-to-
image distillation module that transforms event features into the image feature space without
needing an intermediate intensity image, trained with self-supervision from corresponding
LDR features. (3) An event window sampling mechanism that leverages their high temporal
resolution by extracting subsets of events and spatially aligning them in feature space.

2 Related Work

HDR from Bracketed LDRs: Bracketed HDR methods capture differently exposed LDRs
and merge them in a weighted fashion [6]. In dynamic scenes, the LDR images must be
aligned to the reference, often using optical flow, and then processed with a reconstruction
network. [18] pioneered this two-stage process, using classical optical flow [20] to align low-
and high-exposure images to the medium frame and a CNN to merge and correct alignment
errors. [44] used a similar approach, but instead of optical flow, compute a homography
for background alignment, relying on the CNN to correct foreground motion implicitly. [45]
followed this pipeline but introduced attention to suppress undesired information (misaligned
and badly-exposed regions) from the LDRs before merging. [26] and [29] replaced classical
optical flow with learning-based approaches, e.g. FlowNet [7], and [30] save computation
by computing flow at low resolution and upscaling. Despite performance improvements,
these methods still suffer ghosting, particularly for fast-moving objects and saturated regions.
Recent developments include [24] with a GAN-based approach and [31] using a weakly
supervised training strategy. Most relevant to ours, [21] introduced deformable convolution
alignment, which we adopt in our work, and won the NTIRE’21 HDR challenge [27].
Intensity Reconstruction from Events: [3] was one of the first to explore intensity image
reconstruction from events; however, it was restricted to known camera motion: a rotating
event camera for panoramic imaging. [2] advanced to generic camera motion, estimating
joint intensity and optical flow with cost function minimization. In the seminal E2Vid, [33]
was among the first to employ a learning-based approach, utilizing a recurrent neural network
(RNN) for video reconstruction. Other approaches include [48] using an RNN and [15]
employing a conditional GAN. Extensions to [33] include: reducing network parameters
[35], improving generalization [38], and enhancing temporal consistency using optical flow
[47]. Although image reconstruction from events has progressed considerably, results are
typically low resolution, grayscale, and exhibit artifacts. Moreover, events primarily reflect
edge information, and these approaches hallucinate details in textureless regions. [16, 41,
43] proposed reconstructing high-resolution HDR images from low-resolution events, and
[42] tried to learn more robust event representations by jointly learning HDR images with
downstream tasks such as segmentation and depth estimation via knowledge distillation [40].
However, these methods still suffer in dealing with event sparsity and fail to produce detailed
colour reconstructions compared to image-based HDR methods.

Event-guided HDR Reconstruction: Rather than reconstructing intensity images solely
from events, previous approaches have used events to guide the LDR to HDR mapping.
Notably, [13] proposed a multi-modal system and learning framework using a single LDR
and intensity map generated by events. However, the method has two main drawbacks: 1) the
event intensity map is generated using off-the-shelf network E2Vid [34] and thus, they do not
optimize end-to-end, resulting in a point of model failure, and 2) using a single LDR limits
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their ability to handle scenes with extreme brightness ranges. These two aspects hinder the
algorithm’s performance, which suffers from colour artifacts in over-exposed regions, and its
quantitative performance falls short when compared to SoTA multi-frame HDR methods that
only use a conventional camera. We solve these issues using an end-to-end HDR network
that learns from LDRs and events jointly. Specifically, we enhance bracketed multi-frame
HDR reconstruction with multiple event streams, enabling the processing of more complex
scenes. Moreover, we leverage information between the events and LDRs using knowledge
distillation. Our unified HDR framework directly fuses images and events in the feature
domain without relying on the intermediate step of event intensity image generation.

3 Proposed Method

Given a sequence of n LDR images with different exposure values {I}, b, ...,I,} captured at
timestamps {#1,%, ...,1, } and a stream of input events {E,}Z’) our aim is to reconstruct a single
HDR image H aligned to the reference frame I, at timestamp #,.¢. In our implementation,
we use three input LDR images corresponding to short, medium and long exposures, speci-
fying the middle frame as the reference 1.y = I. To generate inputs to our model, we follow
[18, 44, 45] forming a linearized image L; for each /; as follows: L; = Iiy/ T;,i=1,2,3, where
T; is the exposure time of image /;. Setting Y = 2.2 approximates the inverse gamma correc-
tion while dividing by the exposure time adjusts the images to have consistent brightness.

Events and LDRs are acquired simultaneously but at different frequencies, i.e. LDRs are
acquired at low frequency {#1,#,,#3} and events at high frequency E; € [t,#3] where 7y is the
beginning of the event stream before the first LDR is acquired. Events provide additional
information in-between the low-frequency LDRs and parts of the event stream correspond to
the acquisition of a different LDR image, therefore we partition the input event stream into
three chunks corresponding to the LDR timestamps: {Ey,E», E3} = {Ej -, E, —1y, Ety—13 }-
Therefore, our proposed network g can be defined as H = g ({I;},{L:},{E:};0), where H
denotes the reconstructed HDR image and 0 the network parameters.

Following [21], instead of concatenating the inputs and processing jointly, we use a
multi-branch pipeline where each input modality is processed separately before fusion. Specif-
ically, for LDR images {/;}, we learn attention feature maps with a spatial attention module
A to suppress misaligned and badly-exposed regions. Gamma-corrected linear images {L;}
are processed using a pyramidal, cascading and deformable (PCD) alignment module P~
to handle scene or camera motion. We extend the method for events {E;}, using a sepa-
rate PCD module P to spatially align event features to the reference timestamp. Finally, a
feature distillation module D transforms intermediately sampled events {E;} into the image
feature space. Therefore, more accurately our end-to-end network g can be described as:

A=g (A(Ii)v,PL(Li)ﬂtpE(Ei)a’D(Ej);9) : 1

3.1 Network Architecture

In this section, we provide an overview of our approach (shown in Fig. 2). Our architecture
is composed of five components: 1) an LDR spatial attention module A, 2) a linear im-
age alignment module P, 3) an event alignment module P, 4) an event-to-image feature
distillation and alignment network D, and 5) a fusion and HDR reconstruction network.

1) LDR Attention Module: Following [45], a spatial attention module A learns attention
maps from the three input LDR images. Given LDRs {/;,l;,13} we extract features using
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. Event Alignment
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Figure 2: Model architecture. LDRs pass through an attention module, while gamma-
corrected linear images and events are spatially aligned using pyramidal deformable con-
volution (PCD) alignment modules. Events are temporally sub-sampled and translated to
pseudo-image features using distillation. Finally, the reconstruction network, comprising
residual dense blocks, fuses the aforementioned input branches producing an HDR image.

Reconstruction
Network

3x DRDBs

‘ Convolution block —— Global skip connection

@ Element-wise addition ===> Local skip connection

a single convolutional layer. For each non-reference LDR image (I; # I,), we concatenate
the features with the reference features f! res as input to the attention module, comprising
two convolutional layers and a sigmoid function, generating an attention map in the range
0-1. Element-wise multiplication of LDR features with the corresponding attention map
generates spatially attenuated features for each LDR image: f/ = A (I,-,I,e f) ,i=1,3.

2) Linear Alignment Module: Following [21], we use a PCD alignment module PL to
align gamma-corrected linear images {L;} at the feature level. As shown by [4], align-
ment at the feature level is typically better than at the image level, and we do this with
deformable convolution [5]. We extract multi-scale feature pyramids using strided convolu-
tions for each {L;} and perform PCD alignment to the reference features f ¢ at each scale:
fL Pt (LlaLref) i=1,3.

3) Event Alignment Module: For the event modality we employ a separate PCD alignment
module PF to perform spatial alignment in the event feature domain. [48] demonstrated that
alignment of events using deformable convolutions is effective for the task of intensity image
reconstruction. In detail, we align the partitioned input event streams E| = {E;,;, } and E3 =
{E:,—,} to the events accumulated during the capture of the reference frame corresponding
to the reference timestamp E,,y = {E =i} fiE =PpE (E,-,Ergf) ,i=1,3.

4) Event-to-Image Distillation: To leverage complementary information between events
and images, we introduce a novel feature distillation module D that learns to transform events
into the image feature domain since our end goal is to predict an HDR image. Events accu-
mulated during different parts of the event stream correspond to the acquisition of a different
LDR image, i.e. three partitions of the event stream {E|,E»,E3} = {Ey—,Et, -0, Ery—t3 }
correspond to gamma-corrected linear images {L;,L,,L3} at times {t;,t,,73}. Therefore, to
translate events into image features, we apply a self-supervising ¢, loss between the extracted
event features fiE and the corresponding linear image features fiL at each timestamp i:

o= % ¥ (7 s (74). @
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where sg(-) indicates a stop-gradient, i.e. the learnt linear image features f~ are treated as
self-supervising labels. This encourages domain transfer of event features into image fea-
tures. We apply this loss at each scale s € S of the feature pyramid. The event-to-image dis-
tillation network exploits the higher temporal resolution of events by sub-sampling the input
event stream using a sliding window approach. Sampling chunks of events in-between the
LDR keyframes and passing these through the learnt distillation network enables us to pre-
dict intermediate pseudo-image features fiL (event features transformed to image domain),
thereby enriching our combined feature representation. This process is shown in Fig. 3.

Events

-nww mmm# MJ!

[T
IR

Linear Image Features

Figure 3: Event-to-image feature distillation transforms events into image domain features.
Left: a self-supervision training strategy employs a loss on the corresponding LDR features.
Right: intermediate features are generated by sub-sampling events with a sliding window.

5) HDR Reconstruction Network: The feature maps from the aforementioned input branches
(LDRs after attention, aligned linear images, aligned events, and event-to-image features) are
concatenated as input to the HDR fusion network. The fusion network follows good practices
common in recent literature, e.g. [21, 45], consisting of three dilated residual dense blocks
(DRDBs), with dilated convolutions [46] to increase the receptive field, and global and local
skip connections. As shown by the ablation results in section 4, we find that adding these
submodules leads to improved HDR quality with less ghosting and better detail recovery.

3.1.1 Loss Function

Following previous work [21, 45] we use the t-law to map from the linear HDR image to
the tonemapped image 7 (H) = log(1 + uH)/log(1 + w), where H is the linear HDR image,
T (H) is the tonemapped image and y = 5000. We then estimate the ¢1-norm between the
predicted and ground truth HDR images as follows: Lypg = ||T(H) — T (H)||,. In addition
to the tonemapped reconstruction loss, we use a self-supervising loss given by Eq. (2) on the
features generated from our event-to-image feature distillation module. Therefore, the total
loss is the sum of the HDR reconstruction loss and distillation losses: L;pra = Lapr + Lp.-

3.2 Training Details

Training Data: We model bracketed exposure LDRs from ground truth HDR video frames
and generate synthetic event data using ESIM: Event Camera Simulator [32]. We obtain
ground truth HDR frames from the HIM HDR dataset [9], which contains sequences with
varied scenes, lighting and motion. Following [28], using four scenes for validation/testing
and 25 scenes for training, ensuring no scene overlap between training and testing/validation
splits, we obtain 1500, 60 and 201 samples for training, validation and testing, respectively.


Citation
Citation
{Liu, Lin, Li, Rao, Jiang, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Yan, Gong, Shi, vanprotect unhbox voidb@x protect penalty @M  {}den Hengel, Shen, etprotect unhbox voidb@x protect penalty @M  {}al.} 2019

Citation
Citation
{Yu, Koltun, and Funkhouser} 2017

Citation
Citation
{Liu, Lin, Li, Rao, Jiang, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Yan, Gong, Shi, vanprotect unhbox voidb@x protect penalty @M  {}den Hengel, Shen, etprotect unhbox voidb@x protect penalty @M  {}al.} 2019

Citation
Citation
{Rebecq, Gehrig, and Scaramuzza} 2018

Citation
Citation
{Froehlich, Grandinetti, Eberhardt, Walter, Schilling, etprotect unhbox voidb@x protect penalty @M  {}al.} 2014

Citation
Citation
{Pérez-Pellitero, Catley-Chandar, Shaw, Leonardis, Timofte, etprotect unhbox voidb@x protect penalty @M  {}al.} 2022


SHAW ET AL.: HDR FROM BRACKETED EXPOSURES AND EVENTS 7

Image Formation Model: To generate LDRs {I;} we use the pixel measurement model [14]:
I; = min (®T /g + Ip + n, Lyay ), where @ is scene brightness, T exposure time, g sensor gain,
Iy offset current, n sensor noise and I, saturation point. We approximate & by the ground
truth HDR image and generate LDRs by modifying T for any three consecutive frames.
Noise Model: We include a noise signal n whose variance comes from three sources: photon
noise, read noise, and ADC gain and quantization: Var(n) = ®/g*>+ 02 _,/8> + 03pc [27].
Event Generation Model: To generate high-frequency events, we follow Vid2e [11] by
temporally upsampling the HIM HDR video sequences using Super SloMo [17]. Whereas
prior works use tonemapped LDR video as input, to retain high dynamic range, we first
u-tonemap the ground truth HDR frames to the nonlinear domain, as the pre-trained Super
SloMo network was trained on tonemapped LDR videos. The resulting interpolated frames
are converted back to the linear domain with the reverse tonemap transformation. ESIM
then processes the upsampled frames with a contrast ratio of C = 0.5 generating binary event
streams {E;} = {(xi,yi, %, pi) }. Examples of synthetic event data are shown in Fig. 4.

Event Representation: To process events with a CNN, we discretize the time axis into B
bins. Following [47], we extend the effective temporal resolution beyond B by weighted
accumulation of events. Given N events {E;}i—o. n—1 = {(xi,¥i,t, Pi) }i=0,...N—1, We scale
the timestamp range At = fy_1 — 1y to [0, B— 1]; each event distributing a polarity p; to the two
closest spatio-temporal voxels: E(x;,y;,t;) = ¥; pimax (0,1 — |t; — t7]), where t; = 821 (1; —
fp) is the normalized timestamp. We use B =5 as is typically used [33]. Note, increasing B
has limited influence on reconstruction at the expense of increased computational cost.
Implementation Details: Each module consists of 3 x 3 convolutions, extracting 64 feature
channels, and the network ends with a ReLU predicting an unbounded linear HDR image. In
training, we randomly sample crops of 256 x 256 x 3 from the LDR images and correspond-
ing crops of 256 x 256 x 5 from the event voxel grids. Augmentations consist of horizon-
tal/vertical flipping and 90° rotations. We train each model for 2000 epochs with batch size
16, a learning rate of 10~ and Adam optimizer. We use a stepped learning rate schedule
decaying by factor 10 every 500 epochs. Future work will aim to provide implementation
under popular learning frameworks e.g. [1, 25].

4 Results

This section presents results on synthetic and real event data, using PSNR in the linear and
tonemapped domains (PSNR-L and p) and HDR-VDP-2 (HV2) [22]. We compare 8 other
methods: three non-learning bracketed LDR methods Debevec [6], Mertens [23], Sen [37],
two SoTA learning-based bracketed LDR methods AHDR [45], ADNet [21], event-only
method E2Vid [33], and two Neuromorphic HDR [13] models (Neuro! and Neuro?) which
combine a single LDR with an event intensity map. Neuro! follows the training procedure of
[13] generating a synthetic event intensity map from the Poisson reconstruction of the ground
truth HDR image gradients. Neuro? is the same model with the intensity map generated by
E2Vid. These models are the best performing and most relevant models to our method.
Note that E2Vid is disadvantaged as it only uses event data and cannot reconstruct colour
information reliably. Thus, we compute metrics for this model in the grayscale domain.

Synthetic Events Dataset: Quantitative results using synthetic event data generated from
the HAM HDR video test set are displayed in Table 1 (left). Our method performs signifi-
cantly better in all metrics over the other methods, with an over 2dB increase in PSNR-L and
almost 1dB increase in PSNR-t over the closest performing model ADNet. Note that E2Vid
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Table 1: Quantitative results on the HDM test set with synthetic events (left) and on DSEC
test set with real events (right). Best performer on each dataset denoted in bold.

HDM dataset DSEC dataset
Method Inputs PSNR-L PSNR-u  HV2 PSNR-L PSNR-u HV2
Debevec [6] 3 LDRs 26.52 15.83  40.87 10.19 13.20  68.10
Mertens [23] 3 LDRs 31.71 19.73 3992  13.89 1743  68.53
Sen [37] 3 LDRs 32.44 28.32  37.05 15.53 25.02  70.17
AHDR [45] 3 LDRs 37.79 36.59  49.11 36.52 34.64 7447
ADNet [21] 3 LDRs 39.18 36.89  50.06 37.17 35.12 75.14
E2Vid [33] Events 22.44 14.68 3890 12.04 10.84  64.29

Neuro! [13] LDR + Events 32.34 3097 48.63 2826 31.62 7276
Neuro? [13] LDR + Events 27.45 2598  36.72 2258 2476  68.92
Ours 3LDRs +Events  41.81 3784 5579 38.13 3583 76.65

performs particularly poorly here because of its RNN architecture which is unstable for short
sequences, and the fact that many frames in the HIM dataset have relatively little motion.
The network falls into a failure case with a sparse event signal, unable to reconstruct the im-
age properly. In contrast, our method can rely on the other input modality of the bracketed
LDRs to maintain good HDR reconstruction performance even with a lack of events.

EEREER

E2d AHDR  ADNet Neuro! Neuro®  Ours GT 2V1d AHDR  ADNet Neuro' Neuro?
Figure 4: Qualitative results on HdM test set with synthetic events. Top left: input LDRs and
events, top right: predicted HDR image using our method, bottom row: comparison crops.

Real Events Dataset: As there are no publicly available real-world datasets with both HDR
images and events, we use the DSEC dataset [12] to experiment with real events. In DSEC,
a car-mounted rig captures LDR video and hardware synchronized events. Due to FoV, op-
tical center and resolution differences, events are spatially aligned to the video frames using
calibration. We choose well-exposed frames as pseudo ground truth HDR (no clipped shad-
ows/highlights) and degrade them with the exposure model, noise, clipping and quantization
to generate short, medium and long exposure LDRs as discussed in section 3.2. Events are
extracted from the event stream corresponding to the timestamps of the selected frames.
Quantitative results are shown in Table 1 (right). Similar to the synthetic dataset, our
approach outperforms all other methods in each metric, with gaps of roughly 1dB and 0.7dB
(PSNR-L and u) to the second best-performer ADNet. Qualitative results are shown in
Fig. 5. We outline in the crops noticeably better texture reconstruction in fast-moving objects
(note, in this driving dataset, most motion occurs towards the edges of the frame, with the
middle being relatively static), such as the tunnel surface and the lane edge. High-contrast
structures, e.g. the traffic signal, are better recovered, and even in challenging regions of
over-exposure object and scene structure is better preserved (e.g. rock to sky transition).
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E2Vid AHDR ADNet Neuro' Neuro® Ours GT E2Vid AHDR ADNet Neuro' Neuro® Ours GT
Figure 5: Qualitative results on the DSEC test set with real events. Top left: input LDRs and
events, top right: predicted HDR image using our method, bottom row: comparison crops.

Table 2: Ablation studies for different model components on the HAM test set. See Sec. 4.1.

Imbalanced Params Balanced Params
Method Params(M) PSNR-L PSNR-p  HV2 Params(M) PSNR-L PSNR-u HV2
Images-only 2.81 39.18 36.89  50.06 6.14 37.75 36.33 4892
+ Event alignment 4.38 40.97 37.35 5514 6.27 39.55 36.62  52.15
+ Event sub-sampling 4.67 41.32 37.60  54.85 6.74 40.39 36.98  53.33
+ Event-to-image distill. 6.13 41.81 37.84 5579 6.13 41.81 37.84 5579

4.1 Ablation Studies

We perform ablation studies examining the performance of each component of our model.
Quantitative results for each ablation on the HdM test set are shown in Table 2 Left. We
train each model equally in the four following scenarios. First, Images-only uses only brack-
eted LDRs as input, equivalent to ADNet. Second, Images + Event alignment is bracketed
LDRs and the event alignment module discussed in section 3.1 (3). Third, Images + Event
sub-sampling is bracketed LDRs and sub-sampling of the event stream with alignment to
the reference without feature distillation. And fourth, Images + Event-to-image distillation
is our complete model with sub-sampled events passed through the distillation module dis-
cussed in section 3.1 (4). The results show that each model configuration increases PSNR,
thus validating our model design. The best result comes from the Images + Event-to-image
distillation model, demonstrating the advantage of using feature distillation from events to
images, rather than aligning the sub-sampled events in the event-feature domain.

Note that deleting modules for each ablation modifies the architecture, reducing the effec-
tive number of parameters, which may account for the changes in performance. We address
this by increasing the number of features in the remaining modules to ensure the number of
parameters in the network remains roughly constant for each configuration (Table 2 Right).
Adding extra parameters leads to over-fitting; the Images-only model with balanced parame-
ters only scores PSNR-L/u 37.75/36.33dB. Even with balanced parameters, the performance
improves with each module addition, and our complete configuration still performs the best.

Furthermore, we observe that the additional input information of events does not neces-
sarily lead to performance improvement. To support this, we ran the following experiment:
concatenating events with the input LDRs and feeding into the baseline ADNet. This leads to
a performance decrease, scoring only PSNR-L/ut of 37.91/36.01dB because the input modal-
ities occupy different domains. Thus, our specific architecture design is essential to leverage
this additional information appropriately and achieve the reported performance gains.
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5 Conclusions

We have presented a learning-based method leveraging events and bracketed LDRs to im-
prove HDR reconstruction, with benefits over event- or image-only methods. In static scenes
where event-only methods fail (no event signal), our method resorts back to the input LDRs
and is equivalent to SoTA image-based method ADNet. In dynamic scenes, where image-
based methods struggle, our method leverages high-frequency events to better align and
reconstruct details. Our method is better at handling dynamic highlights, e.g. flashing lights
and fast-moving textures, which image-based methods struggle to align due to over-exposure.
Aligning events and images in feature space enriches our feature representation and leads to
better reconstructions, and the event-to-image domain distillation allows the system to find
an optimal feature space for both events and images without an event-based intensity guide
image. We validated our method on both synthetic and real events, and conducted ablation
studies supporting our contributions. Our method obtains significant improvements over
other SoTA algorithms in all the measured metrics and noticeably improved visual results.
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