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Abstract

The saliency map produced by current deep neural network models fails to accurately
focus on important regions of an image due to the influence of input noise. In this pa-
per, we propose a deep learning interpretability method based on information bottleneck,
which guides the model training by the probability distribution between the saliency
map attributed by the information bottleneck and the gradient-based saliency map. This
approach corrects the important regions focused by the model from an information-
theoretic perspective. Meanwhile, a saliency suppression mechanism is presented to
keep the saliency map of the model away from incorrect classification results and close
to correct ones. Experiments show that our method can improve the saliency localization
of the model while retaining its accuracy. Compared with other state-of-the-art meth-
ods, the Average Drop rate improves by 1.57% and 1.43%, and the Average Increase
rate improves by 2.18% and 0.18% in the ResNet-50 model and the VGG-16 model,
respectively.

1 Introduction

Deep Neural Networks (DNNs) have achieved superior performance in many real-world
applications. The superior representational learning capabilities of DNNs have been demon-
strated in a variety of disciplines, including deep reinforcement learning and neural machine
translation. However, deep learning still has some significant disadvantages. As a compli-
cated model with millions of free parameters, DNNs often exhibit unexpected behaviors.

To interpret deep neural networks, especially CNNs with visual inputs, visual saliency
can be used to highlight important features that contribute to model prediction. However,
current interpretable methods produce saliency maps that are often noisy or do not match
human knowledge. Neural networks are trained using datasets can converge well, but the
neural network only extracts features from the background of the image instead of the fore-
ground, due to the noise and uncertainty in the dataset. Given an image of an airplane, for
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Figure 1: The proposed overview model for information bottleneck saliency-guided localiza-
tion. step @ implements a gradient-based saliency map. step @ implements a saliency map
based on information bottleneck attribution. step @ implements an information bottleneck
saliency map is used to guide model training.

example, the saliency map might highlight the blue sky rather than the airplane itself. There-
fore, interpretable methods based on the saliency map must not only be able to produce a
saliency map, but also to correct the focus of the saliency map.

In this paper, an interpretable method for saliency-guided localization based on informa-
tion bottleneck is proposed to improve the focusing ability of convolutional neural networks.
The contributions of our method are as follows:

* A novel interpretable method based on information bottleneck saliency-guided local-
ization is proposed, which modifies the saliency map of the model to improve inter-
pretability from the perspective of information theory.

* We propose a saliency suppression mechanism that constrains the focus between ground-
truth and non-ground truth saliency maps to reduce saliency from non-ground truth

classes.

2 Related Work

Information Bottleneck. The information Bottleneck [18] is an information-theoretic based
data analysis method, which treats the pattern extraction from data as a process of data com-
pression. Tishby et al. [17] and Shwartz et al. [14] proposed the use of information bottle-
neck theory to analyze decision-making within deep neural networks. Achille ez al. [1] and
Dubois et al. [3] used information bottleneck theory to obtain optimal representations in deep
neural networks. Jeon ef al. [7] studied decomposed representation learning for generative
models by information bottleneck theory. DICE [11] asserts that to use information bottle-
neck theory effectively, it is vital to eliminate the redundant information exchanged between
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features produced by independently trained DNNs and the needless redundancy between fea-
tures and inputs. Lee et al. [9] argued that most of the information bottlenecks occur at the
last layer of the network and reduce this information bottleneck by modifying the training
scheme. Schulz er al. [12] restricted information transmission in the model by introducing
noise to the intermediate feature maps before quantifying the information present in the im-
ages. Most of the above information bottleneck methods are used only for model analysis
but are not applied to model training and manipulation.

Visualizing CNN. The Class Activation Mapping (CAM) [21] approach modifies the
architecture of convolutional neural networks by replacing the fully connected layers with
convolutional and average pooling layers to achieve class-specific saliency maps. CAM is
a classical and intuitive method that satisfies the requirements of the benchmark in terms of
faithfulness [5, 8, 20]. Grad-CAM [13] flows the gradient of a specific class to each feature
graph and then uses the average gradient as the weight. Grad-CAM++ [2] considers that
each element on the gradient map contributes differently, so additional weight is added to
the weight of the elements on the gradient map. Score-CAM [19] does not need the gradient,
but generates the weight for each feature graph through its forwarding score. Ismail et al.
[6] used saliency-guided training to reduce the noise gradient by repeatedly masking input
features of low gradient values. The above CAM methods generate saliency maps from the
parameters of the model itself, and its main purpose is to understand the attention region
of the model. However, the attention region of the model is not always optimal, so it is
necessary to be able to modify it.

3 Method

We design a salience-guided training method based on information bottleneck. The overview
model is shown in Figure 1. First, the saliency map is derived using a gradient-based ap-
proach, and the gradient information flowing into the last convolutional layer of the CNN
is used to assign importance values to specific decisions of each neuron. The saliency map
is derived from this importance value. Second, the quantification of the forward pass in-
formation flow [12] over the network is done. Noise is injected into the feature map of the
pre-trained model, thus suppressing the information flow through it. The intensity of the
noise is then optimized to minimize the information flow while maximizing the classifica-
tion score of the original model. The saliency map is derived from the distribution of the
noise. Last, the loss between the information bottleneck and the gradient-based saliency
map is computed using our proposed saliency suppression mechanism to update the entire
convolutional neural network.

3.1 Saliency Suppression Mechanism

The CAM approach produces class-specific saliency maps in the model, so that a network
will have multiple saliency maps and different classes will correspond to different saliency
maps. For this reason, a saliency suppression mechanism is proposed, where the focus of
other classes is suppressed in the saliency map of the target class, and the focus of different
classes of saliency maps is separated.

The approach in this paper uses saliency maps to guide the training and localization of
the model, so a loss function between saliency maps is necessary. Therefore, we propose a
new learning objective that incorporates the discrepancy between saliency maps as part of
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Figure 2: (1) is the input image. (2) is the saliency map of the ground-truth (target) class.
(3) is the saliency map of the non-ground truth (highest probability) class. (4) is the saliency
map of the ground-truth class after several iterations of saliency suppression mechanism.

the learning process. The saliency map L€ of the ground-truth class ¢ and the saliency map
L? of the class p with the highest probability are given, where the saliency map L comes
from the non-ground truth class with the highest classification probability. We want to keep
the saliency map of the ground-truth classes away from the saliency map of the non-ground
truth. The saliency suppression loss Lgs is shown in Equation 1:

Y [min (LS, LP) - Mask,]
Zl]( +LP>

nn

Lgs (L, L) = ey
where the (i, j)" is the pixel in saliency map, and the "-" indicates scalar product.

In addition, to reduce the noise from the saliency map of the non-ground truth class, it is
used as a mask to suppress the focus in the ground-truth class of saliency maps. The Mask, in
the Equation | represents the target object region generated by threshold the saliency map L€
of the ground-truth class. Define Mask, = M, (S(L¢)), where the S(L) operation represents
the ranking of the saliency map L and the M, () operation takes 1 for the first r € (0,1)
pixel and O for the others.

Visualization results of saliency suppression loss are shown in Figure 2. The model has
saliency maps for each class, the most representative of which are the ground-truth class and
the highest probability (non-ground truth) class. The overlap between the saliency maps of
the ground-truth class and the non-ground truth class is reduced by using saliency suppres-
sion mechanism.

3.2 Information Bottleneck Guided Localization

Consider a classification problem on the input data {(X;,y;)};_;, X; is the input image, y; is
the label. Let fy denote a neural network with 0 as parameters. The network is trained to
minimize the cross-entropy loss Lcg on the training set as follows:

mlnlmlze—ZECE (fo (Xi),¥i) 2
7] n:=
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Saliency Map Based On The Gradient. To obtain the saliency map L¢ for the class ¢
of the input image, the gradient-based class activation mapping method is applied. Let f,on
denote the convolutional layer of the model. We compute the gradient of the score y© of the
class ¢ with respect to feature map activations Ak = Seony (X) of a convolutional layer, i.e.
3 Ak The gradlent a - captures the "importance" of the feature map A* for the target class
c. The saliency map L¢ is derived from a linear combination of feature maps and gradients
followed by ReLU:

L ReLU(ZaAk ) 3)

The ReLU operation retains the features that have a positive impact on a particular class.
Unlike other gradient-based algorithms, this method does not use a global averaging pool
because we do not want to blur the importance of the feature maps, but rather use pixel-level
gradient importance.

Saliency Map Based On Information Bottleneck Attribution. The information bottle-
neck attribution method of Schulz et al. [12] is used and injected into the pre-trained network.
The information in A is reduced by adding noise. The signal A* is damped when noise is
added, replacing the part signal with the noise. Linear interpolation between the signal and
the noise is applied to obtain the variable N:

N=24"+(1-2)e (4)

where € ~ N (,uAk, A") and A = blur (o, sigmoid(y)) controls the signal damping and noise

adding. The Y contains each element of the corresponding A¥. The parameter y controls the
amount of information that is conveyed to the next layer. According to the Equation 8, 7 is
optimized individually for each sample. The sigmoid(7y) operation allows ¥ to freely choose
the size, which is restricted to [0, 1] during the optimisation process. The blur (o, -) operation
convolves the sigmoid output with a fixed Gaussian kernel of standard deviation ¢ to obtain
a robust and smooth attribution graph.

If a region contains information that is useful for classification, it is considered relevant.
So we evaluate how much information about A¥ is contained in N. This quantity is the mutual
information 7[A¥, N], and can be shown as:

A%, N] = B [ Dre[P(N | A%)[[P(V)] 5)

where P(N | A¥) and P(N) denote the probability distributions, respectively. The mutual in-
formation cannot be computed exactly, so the variational approximation Q(N) =N ( Mk, ofk)

is used, where all dimensions of N are assumed to be normally distributed and independent,
since the activation after linear or convolution is usually Gaussian distributed. Substitute
O(N) into the Equation 5:

A, N] = Eys [Di [PV | 49)[QWV)]| = Dxe[QWN) [P(N)] ©

The KL-divergence between the first and second normal distributions is contained in the
first term, which makes evaluation simple. Mutual information is approximated by the first
KL-divergence term. Thus, the loss function £ is:

£1=Ey [Da[P(N |45 Q)] 9
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We only retain the information needed to classify correctly. Therefore, there should be little
mutual information, but the classification score should be high. Let £;; be the cross-entropy
of the classification and we get the loss function:

L=Lyg+al; ®)

where the parameter o balances the importance of the two optimization objectives. We
evaluate the Dk (P(N | A¥)||Q(N)) of per dimension to measure the importance of each
feature in N. The saliency map L is obtained by summing over the channel axis c:

Lipw) = ZDKL( (Mot |4 ) 12 (Vi) ) ©

where [h,w] is the corresponding height and width.

Algorithm 1 Saliency Guided Localization algorithm
Input: Image X;, Class ¢, Sample size n of data set
Output: Model after saliency-guided localization

1: Initialization: Let A¥ be the feature map of the last convolutional layer. y¢ and y”

are the prediction scores for the target classes ¢ and p, respectively.
2: foriin [0,...,n—1] do
3:  Get the saliency map of class ¢ and class p,
L6,1P « ReLU (zk %Ak) ReLU (zk 9y Ak>

JAk
4:  Saliency map L is given based on information bottleneck attribution.
5. ifc=p then
6: mlnlmlze [L’CE (L‘ L’b) +BLss (LC LP)}
7:  else )
8: minig)nize% Y Lce (LC,L’I’ )
9:  endif
10:  Update A — Ak according to the above loss function.
S |
11: mlmemlzeﬁ [ (fo (Xi),yi) + uDkr (AkHAk )]

12:  Update model parameters.
13: end for

Saliency Guided Localization. In addition to calculating the cross-entropy loss Lcg
between the saliency map L¢ and L¥ attributed to the information bottleneck, the saliency
suppression loss between L¢ and L? is minimized and A* is updated to obtain A

mingnize;izn‘{ [ﬂCE (L",L”’) +BLss (L",Lp)} (10)

where @ =

a A , L? is the saliency map of the non-ground truth class with the highest clas-

sification probablhty, and f is the hyperparameter used to weigh L¢ and L”. Making feature
graphs continuously learn features that have large contributions to the salience map of infor-
mation bottleneck.

The saliency-guided localization minimizes the KL-divergence between A* and A¥ and
the classification scores were retained. Therefore, the optimization problem for the guided



H. ZHOU ET AL.: INFORMATION BOTTLENECK SALIENCY GUIDED LOCALIZATION 7

localization is:
n

Y [£(fo (%) .30+ uDge (44147 ) | (an

minimizel

6 ni3
where U is a hyperparameter that trade-offs the KL-divergence term and the cross-entropy
classification loss. The KL-divergence term promotes the model to produce similar results
for the original feature map A and the updated feature map A¥. The Saliency Guided Lo-
calization algorithm is shown as Algorithm 1.

4 Experiments

In this section, the experimental setup is firstly introduced by describing the data set, the
model, and the parameter settings used for the experiments. Secondly, experiments with
guided localization are conducted, comparing the before-guided and after-guided saliency
maps. Finally, the model is evaluated quantitatively and the reliability of the saliency maps
is illustrated by continually reducing the region of significance.

4.1 Experimental Settings

These datasets are used in our experiments: (1) ILSVRC2012 is a subset of a large hand-
labeled ImageNet dataset organized according to the WordNet hierarchy. (2) PASCAL
VOC 2007 is a target detection dataset containing 4952 test images from 20 different output
classes. The presence of multiple targets in the dataset makes interpretation more challeng-
ing.

In our work, two different networks are used. The first model is the Resnet-50 network
and the second is the VGG-16 network. Both models take as input images of size 224 x
224 x 3, so all images will be resized before being input into the model.

All experiments have been carried out with » =0.35, &« = 1000, y=5,0 =1, =1 and

u=2.

4.2 Guided Localization

The experiments indicate that this method can then change the important region of the model
without reducing the overall accuracy of the model, making the focus of the model more
consistent with information theory.

The Figure 3 shows some saliency guided localization experiments of the ResNet-50
model trained on the ILSVRC2012 dataset. The input image is shown on the left, the before-
guided saliency map is shown in the middle, and the after-guided saliency map is shown on
the right. This approach allows the model’s saliency map to converge on the saliency map
of the information bottleneck and away from the saliency map of the non-ground truth. As
can be seen from the experimental figure, the guided saliency maps are more consistent with
human knowledge and have improved classification probabilities for the target classes, as
well as improving the performance of the model. For example, in the third row of images
on the right half, the focus region of the saliency map before the guidance is on seagrass,
the focus region of the saliency map after the guidance is shifted to fish, and the prediction
probability of the category fish is also improved.
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Figure 3: The model’s saliency map is changed through saliency-guided localization to make
it easier to understand.

4.3 Quantitative Evaluations

The accuracy of the location evaluation of salience is first measured by objective quantifi-
cation. We deploy ground truth-based metrics, including Energy-based Pointing game
(EBPG), mean Intersection over Union(mloU) and Bounding box (Bbox), to assess the
capability of our method in terms of accurate object localization and feature visualization
compared to the baseline approaches.

Metric EBPG mloU Bbox Metric EBPG mloU Bbox

Grad CAM [13] 60.08 32.16 60.25 Grad CAM [13] 55.44 2652 51.70
Grad CAM++ [2] 47.78 30.16 58.66 Grad CAM++ [2] 46.29 28.10 55.59
Extremal Perturbation [4]  63.24 2629 52.34 Extremal Perturbation [4]  61.19 2544 51.20
RISE [10] 32.86 2740 55.55 RISE [10] 3344  27.11 54.59

Score CAM [19] 35.56 31.0 60.02 Score CAM [19] 46.42  27.71 54.98
Integrated Gradient [16] 40.62 1541 34.79 Integrated Gradient [16] 36.87 14.11 33.97
FullGrad [15] 39.55 20.20 44.94 FullGrad [15] 38.72  26.61 54.17

Ours method 65.07 32.74 58.88 Ours method 58.78 28.32 55.12

Table 1: Results of the state-of-the-art meth- Table 2: Results of the state-of-the-art
ods compared with ours method on ResNet- method compared with our method on the
50 model. VGG-16 model.

Table 1 shows the results of the state-of-the-art interpretable methods and the inter-
pretable evaluation metrics of our method on the ResNet-50 model trained on the PASCAL
VOC 2007 dataset. Table 2 shows the results on VGG-16. For each metric, the best is shown
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Figure 4: Effect of deleting important regions of images with results.

in bold and the second best is underlined. All values are reported as percentages. Our method
achieves excellent results for different metrics and models, indicating its robustness.

Besides, the saliency maps reliability in the decision area is verified. We measure the
"Average Drop (AD)" and "Average Increase (AI)". AD represents the maximum positive
difference between the prediction using the input image and the prediction by the saliency
map mask. The lower the drop in the AD score is, the more reliable the model will be.
Al indicates that the saliency map yields a higher score. A higher score indicates a more
reliable interpretation of the model generation. The faithfulness of the interpretation method
is evaluated by observing the behavior of the model by inputting only the features that are
represented as significant by the interpretation algorithm.

Metric AD(%) Al(%) Metric AD(%) Al(%)

Grad CAM [13] 35.80 36.58 Grad CAM [13] 49.47 31.08
Grad CAM++ [2] 41.77 32.15 Grad CAM++ [2] 60.63 23.89
Extremal Perturbation [4] 39.38 34.27 Extremal Perturbation [4] 43.90 32.65
RISE [10] 39.77 37.08 RISE [10] 39.62 37.76

Score CAM [19] 35.36 37.08 Score CAM [19] 39.79 36.42
Integrated Gradient [16] 66.12 24.24 Integrated Gradient [16] 64.74 26.17
FullGrad [15] 65.99 25.36 FullGrad [15] 60.78 22.73

Ours method 33.79 39.26 Ours method 38.19 37.94

Table 3: Results of the state-of-the-art meth-  Table 4: Results of the state-of-the-art meth-
ods compared with our method on ResNet- ods compared with our method on VGG-16
50 model. model.

In Table 3 and Table 4, the proposed method in this paper has an AD rate of 33.79%
and an Al rate of 39.26% on the ResNet-50 model. The AD rate is 1.57% better than the
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other methods and the Al rate is 2.18% better than the other methods. The AD rate on the
VGG-16 model is 38.19% and the Al rate is 37.94%. The AD rate is 1.43% better than the
other methods and the Al rate is 0.18% better than the other methods.

Part of the pixels in the important regions of our saliency maps are continuously and
randomly deleted from the corresponding input images. From Figure 4, we can find that
for images with partial pixel deletion, the prediction probability slowly decreases with the
percentage of deletion when predicted by the model without guided localization. And the
prediction probability decreases sharply when predicted by the model after guided localiza-
tion. Guided localization makes the important regions of the saliency map more accurate.

5 Conclusion

In this paper, an interpretable information bottleneck saliency-guided localization method
is proposed to guide model training based on information bottleneck and to improve its lo-
calization capability without degrading accuracy. In addition, a saliency suppression mech-
anism is introduced to suppress the saliency maps of ground-truth classes away from non-
ground truth classes. The feature maps are updated by minimizing the loss between the
saliency map of the information bottleneck and the saliency map of the gradient, and the
KL-divergence between the feature maps is calculated to update the parameters. Our method
does not restrict the structure of the network and supports any activation function and net-
work structure. Experiments demonstrate that the synthetic saliency of our proposed method
outperforms that of state-of-the-art methods.
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