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Abstract
We propose a novel framework, Distilling And Refining domain-specific Knowledge

(DARK), for Semi-supervised Domain Adaptation (SSDA) tasks. The proposed method
consists of three strategies: Multi-view Learning, Distilling, and Refining. In Multi-
view Learning, to acquire domain-specific knowledge, DARK trains a shared generator
and two domain-specific classifiers using the labeled source and target data. Then, in
Distilling, two classifiers exchange the domain-specific knowledge with each other to
exploit a cross-view consistency regularization using soft labels between differently aug-
mented unlabeled target samples. During this, DARK leverages information from low-
confidence unlabeled target samples in addition to the high-confidence unlabeled target
samples. To prevent a trivial collapse problem caused by the low-confidence samples, we
propose the utilization of a sample-wise dynamic weight based on prediction reliability
(SDWR). Finally, in Refining, for class alignment, class confusion of the unlabeled tar-
get data is minimized considering the model maturity. Simultaneously, to maintain model
consistency between the predictions of differently augmented unlabeled target samples,
a bridging loss with SDWR is used. Consequently, the experimental results on the SSDA
datasets demonstrate that DARK outperforms the state-of-the-art benchmark methods for
SSDA tasks. The code can be found at https://github.com/Juh-yun/DARK.

1 Introduction
Deep neural networks (DNNs) are widely used in various real-world applications of com-
puter vision tasks such as image classification [7, 17], semantic segmentation [3, 4], and
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Figure 1: Illustration of the proposed method.

object detection [16, 29] with outstanding performance. However, DNN often suffers from
a generalization ability problem that causes a performance degradation when there is a large
discrepancy (domain shift) between the distributions of training and testing sets. Domain
Adaptation (DA) is widely used to solve this problem. Previously, Unsupervised Domain
Adaptation (UDA) methods [6, 8, 14, 22, 34] that assume the labeled source domain and
unlabeled target domain are more actively developed. However, in recent works, Semi-
supervised Domain Adaptation (SSDA) approaches [9, 13, 20, 28, 30, 32, 38] using partially
labeled target samples have been actively researched. Specifically, in industrial applications,
there are many cases where the performance could be boosted by utilizing a small set of label
information of the target domain.

The most important factors that determine the performance of SSDA for image classi-
fication can be described as follows: 1) Efficiency of using partially labeled target samples
and 2) quality of domain alignment between the source and target domains.

Concerning the first factor, when the model is trained with the mixed labeled samples
from source and target domains, a data imbalance problem in which the labeled source sam-
ples dominate the training can occur. Recently, the multi-view approaches [23, 28, 38] make
different training pipelines of source and target data to solve the above problem. They divide
training scenarios for the labeled source and target data to capture the unique information of
each domain. Yang et al. [38] proposes a representative method of the multi-view approach.
It is composed of two models, each consisting of a generator and a classifier. It unifies
Semi-supervised Learning (SSL) and UDA models into a framework using co-training [2],
respectively. However, it requires a high computational complexity, and the pre-training step
is inevitable for the training to converge.

Concerning the second factor, the quality of domain alignment is important for perfor-
mance improvement in SSDA as well as DA. Specifically, inter-domain alignment to reduce
divergence between two domains and intra-domain alignment to create class-wise separable
distribution should be considered together. For the inter-domain alignment, DA methods
mainly use cross-domain alignment approaches [6, 18, 34]. However, if only the inter-
domain alignment is considered without intra-domain alignment, the performance cannot
increase successfully since low-density distributions for each class in the target domain can
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be generated. Therefore, various DA methods focus on the intra-domain alignment by using
a categorical prototype matching [9, 24] and a pair-wise class prediction alignment [8, 15] in
addition to the inter-domain alignment. Kim and Kim [9] performs the intra-domain align-
ment by reducing the distance between class-wise prototypes and their nearby unlabeled tar-
get samples. However, since only unlabeled target samples adjacent to the prototypes from
the source domain are aligned, the class-wise alignment cannot be achieved for all unlabeled
samples.

Consequently, 1) a simple but efficient framework for easy training convergence should
be considered when designing the multi-view setting with a few labeled target samples, and
2) effective inter-and intra-class alignment should be considered together.

In this paper, we propose a novel approach, called Distilling And Refining domain-
specific Knowledge (DARK), to address the problems mentioned above for SSDA tasks as
shown in Figure 1. To summarize, our contributions are as follows:

• We propose DARK, a novel approach to SSDA tasks. In our method, unique domain
specific-knowledge is distilled reciprocally through cross-view consistency regular-
ization using a soft pseudo-labeling and is refined to enhance the class alignment.
When using the soft pseudo-labeling, to maximally utilize the available information,
low-confidence samples are actively used, unlike existing techniques.

• We design a sample-wise dynamic weight based on prediction reliability (SDWR) to
reduce the negative effect of the information from the unlabeled samples having low
confidence scores when using the pseudo labelling.

• We evaluate DARK over DA datasets and compare it with SSDA benchmark methods.
To the best of our knowledge, DARK achieves state-of-the-art results for all datasets.

2 Related Work

2.1 Semi-supervised Domain Adaptation
In Semi-supervised Domain Adaptation (SSDA), Yao et al. [39] and Ao et al. [1] that are
pioneer SSDA methods are derived from Unsupervised Domain Adaptation (UDA). They
only focus on reducing the domain shift like the UDA methods, so labeled target data is not
effectively utilized. Saito et al. [30] addresses the problem of abovementioned methods, and
subsequent SSDA approaches [9, 13, 20, 23, 28, 32, 38] design the model considering the
intra-domain adaptation as well as the inter-domain adaptation using the labeled target data
effectively.

Saito et al. [30] aligns the prototypes of labeled data and the unlabeled target samples
through an adversarial entropy minimax strategy to reduce the domain divergence between
the two domains. Kim and Kim [9] utilizes maximum mean discrepancy (MMD) [18] to
minimize the inter-domain discrepancy and reduces the distance between the categorical
prototypes and the nearby unlabeled target samples for the intra-domain alignment. Li et
al. [13] proposes adversarial adaptive clustering considering the top 5 class predictions of
samples to reduce intra-class variance and increase inter-class variance for the intra-domain
alignment. Singh [32] uses class-wise contrastive learning across domains and target sample-
level contrastive alignment strategy. Qin et al. [28] performs source expansion and clustering
of target samples to make the target distribution being fitted within the source distribution.
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Mishra et al. [20] proposes a pre-training step that aligns features to make class cluster
easier on a domain adaptation step, where target features are generalized through consistency
regularization [33] using the pseudo label [11]. Ngo et al. [23] composes the inter-and intra-
domain-view classifiers and employs collaborative learning with hard pseudo labels for the
domain alignment. Yang et al. [38] decomposes SSDA with SSL and UDA to leverage the
information of labeled data in each domain and finds an optimal decision boundary of the
classification for unlabeled target data using the co-training [2] and Mixup [40].

2.2 Low-confidence Unlabeled Samples

There are various strategies [12, 19, 36, 37] that are used for low-confidence unlabeled sam-
ples in tasks using unlabeled samples. They apply a separate strategy for the low-confidence
samples or adopt a novel pseudo-labeling method and class-wise dynamic weight.

Wang et al. [36] classifies reliable and unreliable pixels by the predefined ratio and em-
ploys different strategies to successfully utilize many unreliable pixels for semi-supervised
semantic segmentation. Li et al. [12] divides groups using the adaptive confidence mar-
gin proposed in the semi-supervised deep facial expression recognition task. It applies
contrastive learning for the low-confidence groups and the pseudo labeling for the high-
confidence group. Mei et al. [19] is one of the unsupervised domain adaptation methods
for semantic segmentation applying the instance adaptive threshold. This approach removes
the noise of pseudo labels by dynamically reducing the proportion of hard class samples
with low confidence. Xu et al. [37] focuses on domain adaptive object detection with severe
class imbalance problem. It assigns large weight to unreliable class samples to solve the
class imbalance problem. All of these methods show performance improvements by dealing
with low-confidence samples in their specific tasks. Thus, we design the model to focus on
exchanging domain-specific knowledge between two classifiers without information loss by
using not only high-confidence but also low-confidence unlabeled samples.

2.3 Consistency Regularization

Consistency regularization is an effective technique that is widely used in semi-supervised
learning [12, 31, 33]. This approach keeps the consistency of predictions between different
views of the same data to encourage a perturbation-invariant model. Sohn et al. [33] proposes
consistency regularization method with differently augmented images in semi-supervised
learning and achieves prominent performance. Since then, various DA methods [20, 23, 25,
28] utilizing unlabeled data employ this consistency regularization technique.

3 Proposed Method

In SSDA, we are given a set of labeled source samples DS = {xi
S,y

i
S}

NS
i=1 , a set of labeled

target samples DT = {xi
T ,yi

T}
NT
i=1, and a set of unlabeled target DU = {xi

U}
NU
i=1, where xi and yi

are an image sample of each dataset and its corresponding one-hot label vector, respectively.
For the label vector yi of each set, (yi)k is a k-th element of the label vector, where k ∈
{1,2, . . . ,K} is an index of K classes. NS, NT , and NU are the number of samples in DS,
DT , and DU , respectively. The goal of the proposed method is to design a novel model that
maximizes prediction accuracy on the DU using DS, DT , and DU .
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The proposed method mainly consists of Multi-view Learning for supervision, Distilling
for inter-and intra-domain alignment, and Refining for evolutional intra-domain alignment as
shown in Figure 1. First, in Multi-view Learning, we train a generator (G) and two domain-
specific classifiers (Fs, Ft ) with standard cross-entropy (Ls

sup, Lt
sup) using DS and DT . Then,

in Distilling, we use a cross-view consistency regularization (Ldst ) using DU with different
augmentations to distill the knowledge between the two classifiers. Finally, in Refining,
we minimize class confusion (Lwcc,Lscc) with the bridging loss (Lbrg). We try to relieve a
negative effect of uncertainty from large perturbations when the class confusion of strongly
augmented samples is minimized during Refining. To cope with the negative effect, we
set weights derived from the class confusion level of the weakly perturbated samples to
reduce the class confusion of large perturbated samples. In addition, we employ sample-
wise dynamic weights based on prediction reliability (SDWR) to alleviate the negative effect
of the low-confidence unlabeled target samples.

3.1 Multi-view Learning for Supervision
To prevent a bias problem from imbalanced data in the training and to extract the domain-
specific knowledge from the labeled data, we separate the training pipeline of DS and DT
into the source-and target-view classifiers, respectively, as shown in Figure 1. We apply the
data augmentation techniques of RandAugment [5] to the labeled source and target data. In
training, the shared generator G, the source-view classifier Fs, and the target-view classifier
Ft are trained using the standard cross-entropy loss:

Ls
sup(x

i
S,y

i
S) =−

K

∑
k=1

(
yi

S
)

klog
(
σ(Fs(G(xi

S)))k
)
,

Lt
sup(x

i
T ,y

i
T ) =−

K

∑
k=1

(
yi

T
)

klog
(
σ(Ft(G(xi

T )))k
)
,

(1)

where σ is a SoftMax function. By this, the two classifiers can obtain the domain-specific
class knowledge.

3.2 Distilling Strategy for Inter-and Intra-Domain Alignment
After Multi-view Learning, Fs has the class information of labeled source data while Ft
has the poor class information from partially labeled target data. To compensate for the
shortage of Ft and take advantage of their strengths, the classifiers exchange each domain-
specific knowledge using a collaborative learning approach [23]. For weak augmentation
A′(·), horizontal flipping and cropping are used randomly. For the strong augmentation
A′′(·), we employ the RandAugment [5]. Weakly and strongly augmented unlabeled target
samples are predicted through the source-view (Fs) and target-view (Ft ) classifiers, and the
corresponding prediction vectors are as follows:

p′
s,t(x

i
U ) = σ(Fs,t(G(A′(xi

U )))), p′′
s,t(x

i
U ) = σ(Fs,t(G(A′′(xi

U )))). (2)

Not only to transfer the knowledge but also to encourage model invariance and consistency,
we minimize the cross-entropy loss between the pseudo label generated over the A′(xi

U ) from
each classifier and the p′′(xi

U ) from the other classifier for cross-view consistency regular-
ization. For the pseudo labeling, we use p′

s(xi
U ) and p′

t(xi
U ) as soft label vectors. If a one-hot
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hard pseudo label is used as in the previous works [13, 23, 38], the influence of incorrect
class information from samples having low confidence could be minimized. However, this
hard label could lead to confirmation bias because of the missing inter-class information and
information from the low-confidence samples. To deal with these, we use all of the p′(xU ) as
the soft labels to deliver the inter-and intra-class information. In this approach, however, low-
confidence samples can contaminate the model. To alleviate this trivial collapse problem, we
use the sample-wise dynamic weight that will be explained in Section 3.4. Then, we apply
label smoothing (LS) [21] to the soft label for regularization by adding a constant prediction
value (α/K) and rescaling the result. LS mitigates negative effects caused by uncertain soft
pseudo-labels of an overconfident model in the early training phase. Consequently, cross-
view consistency regularization loss of Distilling can employ domain-balanced knowledge
by exchanging domain-specific knowledge as follows:

Ls→t
dst

(
xi

U
)
=−

K

∑
k=1

1
1+α

(
p′

s(x
i
U )k +

α

K

)
log

(
p′′

t (x
i
U )k

)
,

Lt→s
dst

(
xi

U
)
=−

K

∑
k=1

1
1+α

(
p′

t(x
i
U )k +

α

K

)
log

(
p′′

s (x
i
U )k

)
,

(3)

where α is the label smoothing parameter, and empirically set to 0.1.

3.3 Refining Strategy for Intra-Domain Alignment
Through Distilling, the model can have high class confusion by large intra-class variance
and small inter-class variance due to the soft label-based knowledge exchange. So, we pro-
pose Refining to perform evolutional intra-domain alignment through a class-wise arrange-
ment. Jin et al. [8] find distinguishable features between confused classes by minimizing
a pair-wise class confusion. Inspired by this, we use the class confusion loss to minimize
categorical confusion for unlabeled target samples as follows:

Lwcc =
1
K

K

∑
k=1

K

∑
ḱ ̸=k

C′
kḱ, Lscc =

1
K

K

∑
k=1

K

∑
ḱ ̸=k

C′′
kḱ, (4)

where Lwcc and Lscc are the class confusion losses of a batch of the A′(xU ) and A′′(xU ),
respectively. C′

kḱ
and C′′

kḱ
are normalized class correlations of softened probabilities us-

ing temperature scaling between two classes k and ḱ in each batch of the A′(xU ) and the
A′′(xU ), respectively. The temperature scaling factor for softened probability is set to 2.5
as in [8]. Since the original class confusion loss is designed for a vanilla unlabeled sample,
there is a following problem to apply it on the A′′(xU ). If the model tries to minimize the
class confusion of A′′(xU ), the negative effect of dark knowledge can occur because strong
augmentation may cause noise in the prediction of the model. To alleviate this, we make a
dynamic weight for the Lscc using the Lwcc as follows:

λ
s,t
scc =

{
exp(−3 ·Ls,t

wcc) Ls,t
wcc ≤ 1,

0 Ls,t
wcc > 1.

(5)

As the Lwcc decreases, that is, when the class confusion of the A′(xU ) is sufficiently low-
ered, the Lscc is progressively activated by the λ

s,t
scc . By this loss, p′

s,t(xU ) and p′′
s,t(xU ) can
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Figure 2: Illustration of SDWR for Ldst and Lbrg.

be varied during training independently. To maintain the consistency of these, we use the
bridging loss as follows:

Ls,t
brg(x

i
U ) =

∥∥p′
s,t(x

i
U )−p′′

s,t(x
i
U )

∥∥2
. (6)

Finally, we organize the overall loss of the Refining strategy Ls,t
re f as follows:

Ls,t
re f = Ls,t

wcc +λ
s,t
scc ·L

s,t
scc +Ls,t

brg. (7)

3.4 Sample-wise Dynamic Weights Determination

As mentioned, we propose a novel sample-wise dynamic weight based on prediction relia-
bility (SDWR) for the loss functions of unlabeled samples.
Information from low-confidence samples. In Distilling, we focus on the utilization of
the information from low-confidence unlabeled target samples mentioned in Section 3.2.
To reduce an effect of the noise caused by uncertain (low-confidence) samples, we set the
sample-wise weights using the first and second largest prediction values of classes as follows:

w′i
s,t = topk[k=1]

(
p′

s,t(x
i
U )

)
− topk[k=2]

(
p′

s,t(x
i
U )

)
,

w′′i
s,t = topk[k=1]

(
p′′

s,t(x
i
U )

)
− topk[k=2]

(
p′′

s,t(x
i
U )

)
,

(8)

where topk(·) is the top k-th of confidence score of the input sample. The model finds the
prediction reliability of the samples by itself and generates the weights during the train-
ing. When using only the topk[k=1](·) as a confidence level for SDWR, the model becomes
overconfidence in the early training phase because it cannot consider the probability of other
classes. So, we also consider the topk[k=2](·) to design the quantitative sample-wise dynamic
weight. The w′i

s,t and w′′i
s,t are multiplied to the Ls,t

dst in Distilling to consider the reliability
of the soft label for the knowledge exchange, which will be described in Section 3.5.
Progressive weight based on the model performance. To apply the bridging loss consid-
ering the convergence status of the model accurately, a product of SDWRs of the A′(xU ) and
A′′(xU ) is used to maintain consistency when each prediction is reliable as shown in Figure
2. We rewrite the Ls,t

brg with SDWR as follows:

Ls,t
brg(x

i
U ,w

′i
s,t ,w

′′i
s,t) = w′i

s,t ·w′′i
s,t ·

∥∥p′
s,t(x

i
U )−p′′

s,t(x
i
U )

∥∥2
. (9)
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3.5 Overall Loss and Inference

The overall loss for training the proposed method can be formulated as follows:

Ls((xi
S,y

i
S),x

i
U ) = Ls

sup(x
i
S,y

i
S)+w′i

s ·Ls→t
dst (x

i
U )+Ls

re f (x
i
U ,w

′i
s,w

′′i
s),

Lt((xi
T ,y

i
T ),x

i
U ) = Lt

sup(x
i
T ,y

i
T )+w′i

t ·Lt→s
dst (x

i
U )+Lt

re f (x
i
U ,w

′i
t ,w

′′i
t).

(10)

As mentioned in Section 3.4, SDWR is applied to Ldst and Lbrg for each sample. We se-
quentially update the gradients of the source-and target-views using Ls and Lt , respectively.
In the inference stage, the probability of the unlabeled target sample is predicted by taking
an averaged output prediction from the two classifiers, Fs and Ft .

4 Experimental Results

In this section, we evaluate the performance of the proposed method on SSDA tasks using
well-known DA datasets [27, 35]. As in the previous study [30], we conduct experiments
using one or three labeled target samples for each class.

4.1 Setups

Datasets. We evaluate the performance on DomainNet [27] and Office-Home [35] datasets.
DomainNet includes 345 classes and six domains. For comparison with the benchmark
methods, we use 126 classes and four domains of Real (R), Painting (P), Clipart (C), and
Sketch (S) following Saito et al. [30], using seven DA scenarios. Office-Home includes 65
classes and four domains: Real (R), Product (P), Clipart (C), and Art (A) for 12 scenarios.
Implementation details. We use Pytorch [26] for implementation. The backbone network
is ResNet-34 [7] which is pre-trained on ImageNet dataset [10] following Saito et al. [30].
For the model optimization, we use SGD with momentum of 0.9, an initial learning rate of
0.001, and the same learning rate scheduler with Saito et al. [30]. We train our model for
50K/10K iterations on DomainNet/Office-Home as in Yang et al. [38].
Benchmarks. We compare DARK to state-of-the-art (SOTA) SSDA methods, MME [30],
APE [9], PAC [20], CDAC [13], ASDA [28], CLDA [32], and DECOTA [38].

4.2 Comparisons with State-of-the-art Methods

DomainNet. Table 1 shows classification accuracies of DARK and benchmark methods for
DomainNet. DARK obtains SOTA performance by showing 3.1% and 2.4% higher classifi-
cation accuracies than ASDA [28] that provides the best performance in benchmark methods,
in average accuracy in one-and three-shot settings. For the performance of each scenario,
DARK shows outstanding classification accuracies compared to all benchmark methods ex-
cept for the R-C scenario of DECOTA [38].
Office-Home. Table 2 shows classification accuracies of DARK and benchmark methods
for Office-Home. DARK outperforms all benchmark methods on the average accuracy. In
the one-shot setting, the performance is improved by 0.9% compared to CDAC [13], which
achieves the highest average accuracy among benchmarks, and by 0.2% compared to DE-
COTA [38], which is the current SOTA in the three-shot setting.
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R → C R → P P → C C → S S → P R → S P → R MeanMethod 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot
MME [30] 70.0 72.1 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9
APE [9] 70.4 76.6 70.8 72.1 72.9 76.7 56.7 63.1 64.5 66.1 63.0 67.8 76.6 79.4 67.8 71.7
PAC [20] 74.9 78.6 73.0 74.3 72.6 76.0 65.8 69.6 67.9 69.4 68.7 70.2 76.7 79.3 71.4 73.9
CDAC [13] 77.4 79.6 74.2 75.1 75.5 79.3 67.6 69.9 71.0 73.4 69.2 72.5 80.4 81.9 73.6 76.0
ASDA [28] 77.0 79.4 75.4 76.7 75.5 78.3 66.5 70.2 72.1 74.2 70.9 72.1 79.7 82.3 73.9 76.2
CLDA [32] 76.1 77.7 75.1 75.7 71.0 76.4 63.7 69.7 70.2 73.7 67.1 71.1 80.1 82.9 71.9 75.3
DECOTA [38] 79.1 80.4 74.9 75.2 76.9 78.7 65.1 68.6 72.0 72.7 69.7 71.9 79.6 81.5 73.9 75.6
DARK (ours) 78.3 79.4 77.9 78.6 79.1 81.0 71.8 74.8 75.1 77.4 72.5 73.8 84.4 85.4 77.0 78.6

Table 1: Quantitative results (%) on DomainNet. The best accuracy is indicated in bold.

# Shot Method R → C R → P R → A P → R P → C P → A A → P A → C A → R C → R C → A C → P Mean
MME [30] 61.9 82.8 71.2 79.2 57.4 64.7 75.5 59.6 77.8 74.8 65.7 74.5 70.4
APE [9] 60.7 81.6 72.5 78.6 58.3 63.6 76.1 53.9 75.2 72.3 63.6 69.8 68.9
CLDA [32] 60.2 83.2 72.6 81.0 55.9 66.2 76.1 56.3 79.3 76.3 66.3 73.9 70.6
CDAC [13] 61.9 83.1 72.7 80.0 59.3 64.6 75.9 61.2 78.5 75.3 64.5 75.1 71.0

1-shot

DARK (ours) 62.0 83.1 74.8 81.5 57.0 67.4 77.1 57.3 80.5 77.1 68.2 76.5 71.9
MME[30] 64.6 85.5 71.3 80.1 64.6 65.5 79.0 63.6 79.7 76.6 67.2 79.3 73.1
APE [9] 66.4 86.2 73.4 82.0 65.2 66.1 81.1 63.9 80.2 76.8 66.6 79.9 74.0
CLDA [32] 66.0 87.6 76.7 82.2 63.9 72.4 81.4 63.4 81.3 80.3 70.5 80.9 75.5
CDAC [13] 67.8 85.6 72.2 81.9 67.0 67.5 80.3 65.9 80.6 80.2 67.4 81.4 74.2
DECOTA [38] 70.4 87.7 74.0 82.1 68.0 69.9 81.8 64.0 80.5 79.0 68.0 83.2 75.7

3-shot

DARK (ours) 66.0 87.4 76.0 82.9 65.1 71.2 82.5 64.0 82.0 81.5 70.8 82.0 75.9

Table 2: Quantitative results (%) on Office-Home. The best accuracy is indicated in bold.

4.3 Ablation Studies
We perform ablation studies and evaluate DARK on DomainNet using ResNet-34 under
the three-shot setting. We evaluate the contribution to the performance depending on each
proposed strategy. In addition, we provide detailed analysis to evaluate the effectiveness of
the components.
Effectiveness of Multi-view Learning. We compare the performance of Multi-view Learn-
ing and a single-view strategy where a single classifier is trained on mixed labeled data. To
focus on the evaluation of the domain-specific knowledge exchange of Multi-view Learn-
ing, we use only Distilling and the bridging loss of Refining except for the class confusion
loss. For the single-view, Distilling of unlabeled target data is replaced by the consistency
regularization loss between the soft labels of weakly augmented samples and the predictions
of strongly augmented samples. As shown in Table 3, Multi-view Learning outperforms
the performance by up to 5.5% in an average of four scenarios compared with the single-
view learning. This result shows that Multi-view Learning captures domain-balanced class
knowledge for domain alignment and alleviates the data imbalance problem.
Synergy of Distilling and Refining. Table 4 implies the effectiveness of Distilling and
Refining for unlabeled target data. In the case of using only Distilling, we use the bridging
loss together to ensure consistent predictions in each view. First, without Refining, Distilling
shows satisfactory performance in DomainNet for the three-shot setting, with an average
performance difference of 0.5% compared to the current SOTA, ASDA [28]. When both
Refining and Distilling are conducted simultaneously, the performance is greatly improved
for all scenarios, and classification accuracy is increased by 2.9% on average.

Method Classifier P → C C → S S → P R → S Mean

Single-view Single-view 71.9 65.8 70.4 62.5 67.6

Multi-view
Source-view 77.4 71.2 73.8 70.0 73.1
Target-view 77.4 71.0 73.8 69.7 73.0
Ensemble 77.4 71.2 73.9 70.0 73.1

Table 3: Ablation study for Multi-view Learning of the proposed method. We report the
classification accuracy (%) on DomainNet of four scenarios for the three-shot setting.
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Distilling Refining R → C R → P P → C C → S S → P R → S P → R Mean

✗ ✗ 61.9 65.1 62.0 58.1 62.4 56.0 75.2 63.0
✓ ✗ 76.5 76.8 77.4 71.2 73.9 70.0 83.8 75.7
✓ ✓ 79.4 78.6 81.0 74.8 77.4 73.8 85.4 78.6

Table 4: Ablation study for Distilling and Refining. We report the classification accuracy
(%) on DomainNet of all scenarios for the three-shot setting.

Lbrg Lwcc λscc Lscc P → C C → S S → P

✗ ✓ ✗ ✗ 79.1 72.1 75.8
✗ ✓ ✗ ✓ 79.2 72.1 75.9
✓ ✓ ✗ ✗ 80.5 74.0 77.0
✓ ✓ ✗ ✓ 80.7 74.4 77.1
✓ ✓ ✓ ✓ 81.0 74.8 77.4

Table 5: Ablation study of components in Refining. We report the classification accuracy
(%) on DomainNet of three scenarios for the three-shot setting.

Ablation study for the Refining strategy. We conduct experiments to prove the contribution
of each of the four components in Refining for the performance: the bridging loss Lbrg, the
class confusion loss of the weak augmentation Lwcc, the dynamic weight λscc, and the class
confusion loss of the strong augmentation Lscc in Table 5. When λscc is not used, a constant
weight (0.3) is assigned to Lscc. When all components are used, it provides the highest per-
formances because the negative effect of Lscc is alleviated. The classification accuracies of
this case are 1.9%, 2.7%, and 1.6% higher than when only Lwcc is used in the three scenarios.
When the model is trained using Lscc and Lwcc, the performance is slightly increased. Also,
combining Lwcc and Lbrg can boost the performance because weakly augmented samples
help strongly augmented samples with aligning class distribution.

5 Conclusion

We introduce DARK for SSDA tasks with distilling and refining domain-specific knowledge
strategy. Our method leverages the domain-dominant class knowledge from multi-view to
acquire the domain-balanced features by the knowledge transfer. In this process, we utilize
the inter-and intra-class information and the information from low-confidence samples using
the soft label and the prediction reliability-aware weight to maximize usable information of
unlabeled target information. Then, the domain-balanced knowledge is refined to minimize
the class confusion of unlabeled target data. We prove that the components of our method
are necessary to improve the performance of each other and that our approach is more ef-
fective compared with other benchmark methods. Although we design the dynamic weight
to minimize the noise of the low-confidence samples to exploit the information, it could
not completely reduce the negative effect on the low-confidence samples in some cases. In
future work, we will study to minimize the negative effect by using different strategies de-
pending on their reliability so that a model can exploit the information from all unlabeled
target samples.
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