Distilling and Refining Domain-Specific Knowledge for Semi-Supervised Domain Adaptation

Ju Hyun Kim¹, Ba Hung Ngo¹, Jae Hyeon Park¹, Jung Eun Kwon¹, Ho Sub Lee², Sung In Cho¹ Dongguk university¹, Daegu university²

Introduction

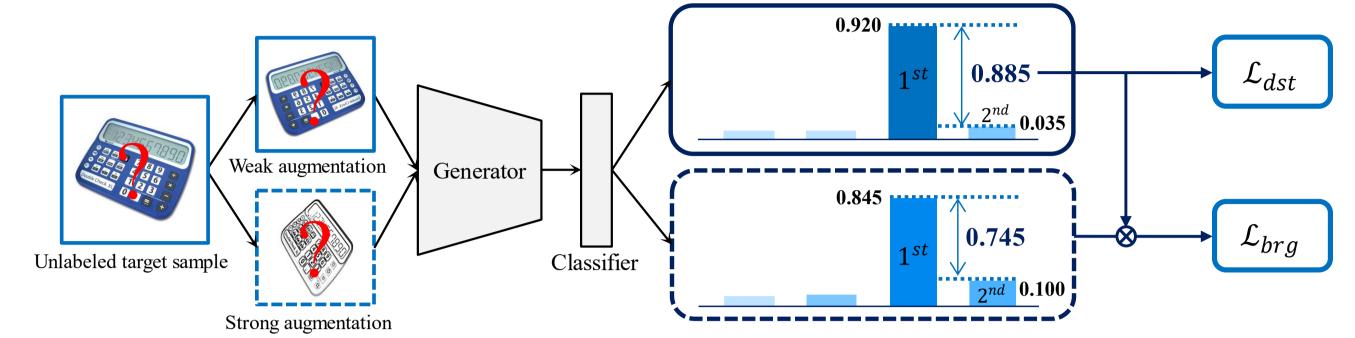
- **•** Key factors that determine the performance of semisupervised domain adaptation (SSDA)
 - 1. The efficiency of using partially labeled target samples
 - When the model is trained with the mixed labeled samples from different domains, an imbalance problem in which the labeled source samples dominate the training can occur.
 - 2. Quality of domain alignment between the source and target domains (Inter-and intra-domain alignment)
 - If only the inter-domain alignment is considered without intra-

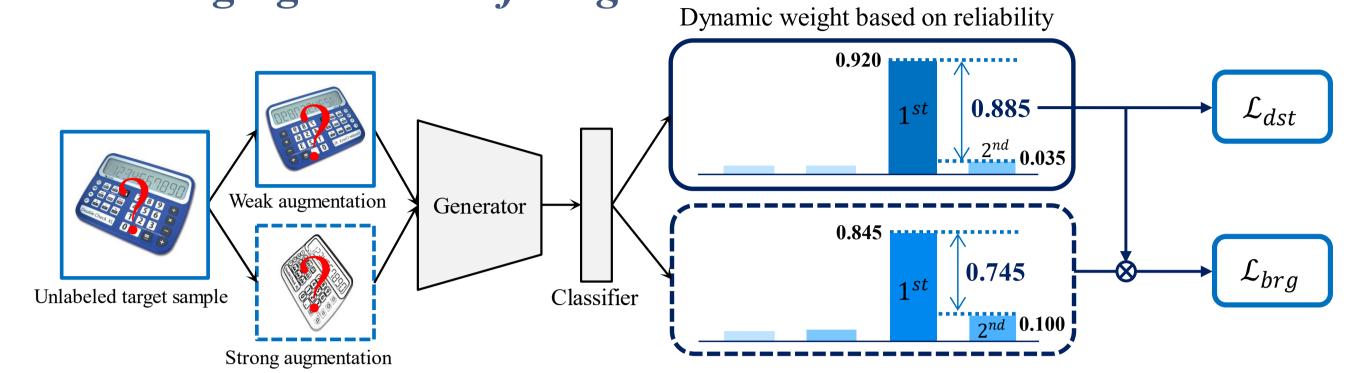
- Dynamic weight based on reliability
 - We propose a novel sample-wise dynamic weight based on prediction reliability (SDWR) for the loss functions of unlabeled samples using the first and second largest prediction values of classes.
 - Information from low-confidence samples for *Distilling*

⊸ांदीा

BNVC

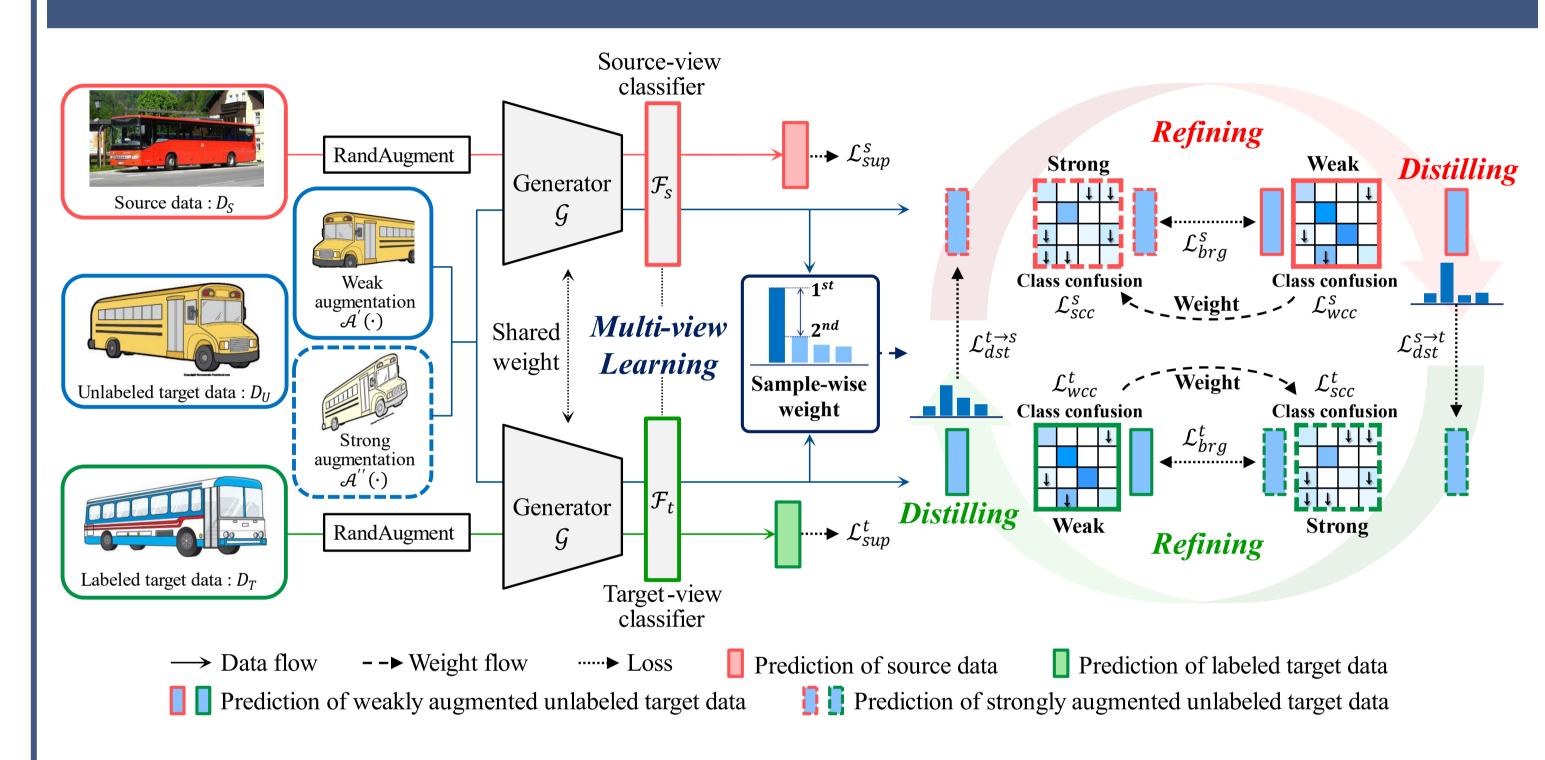
• Progressive weight based on the model performance for bridging loss of *Refining*





domain alignment, the performance cannot increase successfully since low-density distributions for each class in the target domain can be generated.

Proposed method



Multi-view learning for domain-specific knowledge • To prevent a bias problem from imbalanced data and to

Experimental Results

- **Comparison with State-of-the-art Methods**
 - Tables shows classification accuracies of DARK and benchmark methods for DomainNet.

Methods	$R \rightarrow C$	$R \to P$	$P \to C$	$\boldsymbol{C} \to \boldsymbol{S}$	$S \to P$	$R \to S$	$P \to R$	Mean
MME [30]	70.0	67.7	69.0	56.3	64.8	61.0	76.1	66.4
APE [9]	70.4	70.8	72.9	56.7	64.5	63.0	76.6	67.8
PAC [20]	74.9	73.0	72.6	65.8	67.9	68.7	76.7	71.4
CDAC [13]	77.4	74.2	75.5	67.6	71.0	69.2	80.4	73.6
ASDA [28]	77.0	75.4	75.5	66.5	72.1	70.9	79.7	73.9
CLDA [32]	76.1	75.1	71.0	63.7	70.2	67.1	80.1	71.9
DECOTA [38]	79.1	74.9	76.9	65.1	72.0	69.7	79.6	73.9
DARK (ours)	78.3	77.9	79.1	71.8	75.1	72.5	84.4	77.0

Quantitative results on DomainNet of 1-shot setting using ResNet-34.

Methods	$R \rightarrow C$	$R \to P$	$P \to C$	$\boldsymbol{C} \to \boldsymbol{S}$	$S \to P$	$R \to S$	$P \to R$	Mean
MME [30]	72.1	69.7	71.7	61.8	66.8	61.9	78.5	68.9
APE [9]	76.6	72.1	76.7	63.1	66.1	67.8	79.4	71.7
PAC [20]	78.6	74.3	76.0	69.6	69.4	70.2	79.3	73.9
CDAC [13]	79.6	75.1	79.3	69.9	73.4	72.5	81.9	76.0
ASDA [28]	79.4	76.7	78.3	70.2	74.2	72.1	82.3	76.2
CLDA [32]	77.7	75.7	76.4	69.7	73.7	71.1	82.9	75.3
DECOTA [38]	80.4	75.2	78.7	68.6	72.7	71.9	81.5	75.6
DARK (ours)	79.4	78.6	81.0	74.8	77.4	73.8	85.4	78.6

- extract the domain-specific knowledge from the labeled data, we separate the training pipeline of D_S and D_T into the source-and target-view classifiers, respectively.
- **Distilling** strategy for inter-and intra-domain alignment
 - The classifiers \mathcal{F}_s and \mathcal{F}_t exchange each domain-specific knowledge using <u>cross-view consistency regularization</u>.
 - We use <u>soft labels</u> for pseudo labels to deliver the inter-and intra-class information without information loss for flexibility.
 - We apply <u>label smoothing</u> to reduce the negative effects caused by of uncertain training at the beginning of training.
 - We utilize proposed sample-wise dynamic weights for each sample are applied to utilize information from low-reliability data with a reduced negative effect.
- Refining strategy for intra-domain alignment
 - *Distilling* \rightarrow The model can have class confusion by large intra-class variance and small inter-class variance.
 - We propose *Refining* to perform evolutional intra-domain

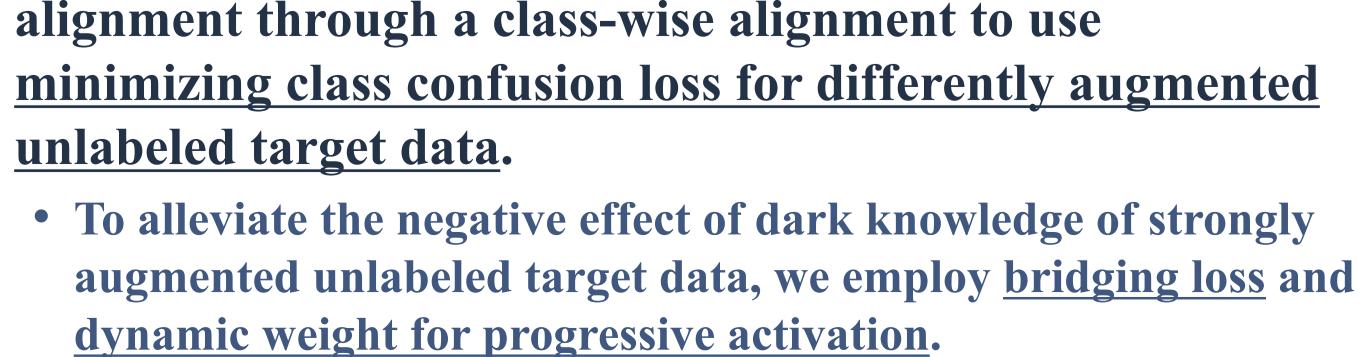
Quantitative results on DomainNet of 3-shot setting using ResNet-34.

► Visualization

• The effectiveness of the *Distilling* and *Refining* startegies

Conclusion

We introduce DARK for SSDA tasks with *distilling* and



We prove that the components of our method are necessary to improve the performance of each other and that our approach is more effective compared with other benchmark methods.

