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Introduction

» Dynamic weight based on reliability

® We propose a novel sample-wise dynamic weight based on
prediction reliability (SDWR) for the loss functions of
unlabeled samples using the first and second largest
prediction values of classes.

p Key factors that determine the performance of semi-
supervised domain adaptation (SSDA)

® 1. The efficiency of using partially labeled target samples

" When the model is trained with the mixed labeled samples * Information from low-confidence samples for Distilling

from different domains, an imbalance problem in which the
labeled source samples dominate the training can occur.

* Progressive weight based on the model performance for
bridging loss of Refining

Dynamic weight based on reliability

® 2. Quality of domain alignment between the source and
target domains (Inter-and intra-domain alignment)

é
Strong augmentation

Experimental Results

» Comparison with State-of-the-art Methods

\

Generator

= If only the inter-domain alignment is considered without intra-
domain alignment, the performance cannot increase
successfully since low-density distributions for each class in the
target domain can be generated.
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Quantitative results on DomainNet of 1-shot setting using ResNet-34.
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Quantitative results on DomainNet of 3-shot setting using ResNet-34.

® The classifiers . and F; exchange each domain-specific » Visualization

knowledge using cross-view consistency regularization.

® The eftectiveness of the Distilling and Refining startegies
Rl

°* We use soft labels for pseudo labels to deliver the inter-and
intra-class information without information loss for flexibility. .-.f.‘ ;

° We apply label smoothing to reduce the negative effects caused
by of uncertain training at the beginning of training.

* We utilize proposed sample-wise dynamic weights for each
sample are applied to utilize information from low-reliability
data with a reduced negative effect.
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Conclusion

» Refining strategy for intra-domain alignment

® Distilling — The model can have class confusion by large
intra-class variance and small inter-class variance.

® We propose Refining to perform evolutional intra-domain
alignment through a class-wise alignment to use
minimizing class confusion loss for differently augmented
unlabeled target data.

P> We introduce DARK for SSDA tasks with distilling and
Refining domain-specific knowledge strategy.

» We prove that the components of our method are
necessary to improve the performance of each other
and that our approach is more eftfective compared with
other benchmark methods.

* To alleviate the negative effect of dark knowledge of strongly
augmented unlabeled target data, we employ bridging loss and
dynamic weight for progressive activation.
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