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Our goal is to detect and recognise fingerspelled sequence 
of letters in continuous British Sign Language videos.

(2) CHALLENGES

Occlusion of the two hands while  
fingerspelling “love”

Fine-grained perceptual differences  
E.g. letters a and i are shown here

Partial fingerspelling:  
Signers fingerspell short 

forms or skip letters.

E.g. NN is finger-spelt 
here for Nottingham.

No fingerspelling datasets in British Sign Language! 

•Challenging — requires expert annotators

• Time-consuming to label each letter

• Not scalable. 

(1) INTRODUCTION (3) AUTOMATICALLY CURATING TRAINING DATA: (i) DETECTION, (ii) RECOGNITION
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RESULTS

Video to 
annotate

Detected Fingerspelling instance

Mouthing of “Lawrence"

We automatically create an initial training set of about 59K training clips by:  
(i) using exemplar-based techniques to detect instances of fingerspelling,  
(ii) associating word labels with the help of a visual keyword spotting[2] model. 

(4) TRANSPELLER

(6) MULTIPLE HYPOTHESES CTC LOSS

Subtitle: Simon Mahony is onboard the tanker Zantos

Simon Mahony Zantos

Model prediction: moy

0.74 0.37
0.96

(5) PSEUDOLABELING to expand and enrich the training data

Approximate fingerspelling localisation from Exemplars 

Mouthing annotation for

"HOMES" (signed not 


fingerspelled)
Stage 1 letter labels: HOMES 
Transpeller output: BEREY

Stage 2 pseudolabels: BERKELEY   

Signer fingerspells "BERKELEY"

Subtitle: "This area will be developed quickly now that Berkeley Homes have got their foot on this corner."

Approximate fingerspelling localisation from Exemplars 

Stage 1 letter labels: INSPECTOR JOHN REBUS 
Transpeller output: JHNRBUS

Stage 2 pseudolabels: JOHN REBUS   

Signer fingerspells "JOHN REBUS"
Mouthing annotation for

"INSPECTOR" (signed 

not fingerspelled)

Subtitle: "For much of that time, I've been writing stories about the murder investigations of my fictional detective, Inspector John Rebus."

M                E                 T                R                E

Predicted: METER  
Ground Truth: METRE

P                A                 N                D                A

Predicted: PENDA  
Ground Truth: PANDA

~ 5K verified fingerspelling clips

 From the BOBSL[1] test set
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   https://www.robots.ox.ac.uk/~vgg/research/transpeller/

Limitations and future directions:

• How do we supervise partially fingerspelt letters?

• Hard negatives to suppress false fingerspelling detections

• Generalising to unseen words during inference [1]  BBC-Oxford British Sign Language Dataset, Albanie et al., arXiv preprint arXiv:2111.03635, 2021


[2] Visual Keyword Spotting with Attention, Prajwal et al., BMVC 2021
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