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Abstract

Advances in computing have enabled widespread access to pose estimation, creating new
sources of data streams. Unlike mock set-ups for data collection, tapping into these data
streams through on-device active learning allows us to directly sample from the real
world to improve the spread of the training distribution. However, on-device computing
power is limited, implying that any candidate active learning algorithm should have a
low compute footprint while also being reliable. Although multiple algorithms cater to
pose estimation, they either use extensive compute to power state-of-the-art results or
are not competitive in low-resource settings. We address this limitation with VL4Pose
(Visual Likelihood For Pose Estimation), a first principles approach for active learning
through out-of-distribution detection. We begin with a simple premise: pose estimators
often predict incoherent ‘poses’ for out-of-distribution samples. Hence, can we identify
a distribution of poses the model has been trained on, to identify incoherent poses the
model is unsure of? Our solution involves modelling the pose through a simple para-
metric Bayesian network trained via maximum likelihood estimation. Therefore, poses
incurring a low likelihood within our framework are out-of-distribution samples mak-
ing them suitable candidates for annotation. We also observe two useful side-outcomes:
VL4Pose in-principle yields better uncertainty estimates by unifying joint and pose level
ambiguity, as well as the unintentional but welcome ability of VL4Pose to perform pose
refinement in limited scenarios. We perform qualitative and quantitative experiments on
three datasets: MPII, LSP and ICVL, spanning human and hand pose estimation. Finally,
we note that VL4Pose is simple, computationally inexpensive and competitive, making
it suitable for challenging tasks such as on-device active learning.
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Figure 1: On-Device Active Learning: Keeping on-device resource constraints in mind, we
use a small (~25% size of the pose model) auxiliary network consisting of convolutional +
fully connected layers to parameterize our skeletal model. The skeletal model is a simple
Bayesian Network, trained via maximum likelihood to learn poses from the training distri-
bution. Poses that incur a low likelihood are out-of-distribution and are added to the training
dataset upon relabelling. VL4Pose delivers real time active learning at ~30FPS.

1 Introduction

Data-centric methods rely on developing models which are robust under a wide range of
scenarios. However, training datasets are usually made in staged setups and may not cap-
ture the complexity associated with real world use cases. So how can we adapt our models
to address different real world scenarios? One approach harnesses data streaming in from
multiple end users, which represents the real world distribution. However, the resulting vol-
ume of data would overwhelm both, end user bandwidth and our data processing pipelines.
Instead, can we turn to active learning [45], to sample only those images which the model
considers informative?

Active learning is a cyclical process of train ⇔ sample and label new images to improve
the spread of the training distribution. Formally, the goal is to identify a subset of unlabelled
data, which if labelled, imparts maximum information to the model thereby improving its
performance. One could argue that the very essence of active learning is to perform out-of-
distribution sampling. Indeed, out-of-distribution images will impart maximum information
to a model trained on the training distribution. Active learning facilitates lower annotation
costs as well as faster training and prototyping due to reduced data volumes. While active
learning has been well studied in literature, keypoint estimation, and in particular human
pose estimation presents a unique challenge. Specifically, popular human pose estimation
architectures are fully convolutional and directly regress 2D heatmaps [28, 58]. This prevents
[8, 47] the use of many algorithms which rely on ensembles, dropouts or logits. As a result,
a new wave of active learning methods [8, 14, 34, 47, 57, 59] address keypoint estimation.

However, recent literature overlooks a key question: Where is active learning taking
place? The process can either be centralized in a computing cluster with no resource con-
straints, or decentralized on the end-user’s device in a resource constrained environment.
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The latter, typically referred to as on-device active learning [15, 41], allows us to directly
tap into the real world data distribution, while also opening new possibilities in customized
machine learning for the end user. This is in contrast to centralized active learning which
has indirect or no exposure to real time samples from the end user. While existing work
focuses on pushing state-of-the-art in active learning for keypoint estimation, they impose
high compute requirements which are infeasible for on-device learning.

With VL4Pose, we propose an algorithm for on-device active learning. We investigate a
first principles approach to active learning for pose estimation; can we leverage simple pose
constraints to identify out-of-distribution samples? Specifically, we model the skeletal struc-
ture through a Bayesian Network which captures simple conditional relationships between
joints. These relationships are parameterized by a small auxiliary neural network which uses
visual cues from images to maximize the likelihood of poses in our training data. Conse-
quently, we expect that out-of-distribution images will have lower likelihood values, making
them suitable candidates for annotation. We also show that our maximum likelihood formu-
lation derives Multi-Peak Entropy [34] and seamlessly unifies joint and pose level ambiguity,
making it a better representative of uncertainty is comparison to [8, 17, 29]. Surprisingly,
modelling simple skeletal constraints also facilitates pose refinement in limited scenarios, a
first for an active learning algorithm. We validate our claims on two different tasks (human
/ hand pose) using two different architectures (direct keypoint regression / heatmaps) across
three different datasets - MPII [2], LSP [22, 23] and ICVL [50]. Our experiments show
that VL4Pose has lower compute costs, interpretable and competitive with state-of-the-art,
making it suitable for on-device real-time active learning.

2 Related Work
Active Learning. Settles’ survey [45] is a comprehensive work on classical active learning
covering algorithms based on diversity, ensemble and uncertainty sampling. The Query by
Committee method of sampling (or ensembles) [3, 26, 36] uses a family of hypothesis for ac-
tive learning selection. Diversity based approaches include Core-Set [43] which sequentially
selects non-semantically similar points. Uncertainty estimation [10, 12, 13, 16, 25, 31] pro-
vides quantitative measures to model ambiguity in the prediction. Bayesian Neural Networks
have been traditionally used to estimate uncertainty; however recent approaches [47, 53] ex-
plore computing uncertainty using a single forward pass through the network. Empirical
approach to estimate ambiguity of the model include Learning Loss [48, 57] which similar
to our approach uses an auxiliary neural network to predict the ‘loss’ for an unlabelled im-
age. Approaches that measure model change include expected gradient length [45], which
uses the model’s gradient as a directly proportionate measure of informativeness. Applica-
tion domains [6, 19, 46, 47] of expected gradient length include image and text analysis.

Pose Estimation. Keypoint estimation (HPE) has been widely studied [5, 30, 38, 49, 52]
in literature, with popular architectures regressing two dimensional heatmaps denoting the
location of the joint. Heatmaps are preferred over direct keypoint regression since they re-
tain positional accuracy which may otherwise have been lost with fully connected layers.
While our work does not address multi-person pose estimation, our goal shares similarity
with affinity fields [7, 27, 28] used to associate parts with individual persons. Jain et al.
[20] and Tompson et al. [51] have previously leveraged Markov Random Fields to vali-
date the configuration of poses predicted by the model. However, the priors defined by the
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approach do not scale well with rotations as well as changes in scale of the person. More-
over, belief propagation is expensive and takes a significant amount of time to converge.
Unlike these methods, our goal is not to improve human pose estimation but instead detect
out-of-distribution samples for active learning. This allows us to use simpler models which
converge faster and benefit from a low compute footprint.

Active Learning for Pose Estimation. Challenges posed by popular human pose archi-
tectures (detailed in [8, 47]) have lead to the development of new algorithms. Liu and Ferrari
[34] proposed an intuition driven framework to model heatmap ambiguity. With VL4Pose,
we provide a mathematical framework which not only incorporates heatmap ambiguity but
also models spatial relationships between joints. Learning loss [48, 57] explored an idea par-
allel to out-of-distribution detection and identified which images were the most difficult for
the model to learn. However, the method has limited ability in identifying out-of-distribution
samples. The uncertainty modelled by EGL++ [47] has high compute requirements. Recent
state-of-the-art methods such as MATAL [14] and UncertainGCN [9] use powerful tech-
niques such as reinforcement learning and graph convolutional networks, however they are
computationally very expensive. Uncertainty in 3D human pose [4, 44, 56] utilizes depth in-
formation or stereo images, both of which are not available for general 2D pose estimation.
We reserve our discussion on uncertainty in 2D for later.

3 Methodology
VL4Pose proposes active learning through out-of-distribution (OOD) for pose estimation.
However, how do we define OOD in the context of pose estimation? For instance, [18,
33, 42] study OOD for classification, and limited literature addresses the same for pose
estimation. Hence, VL4Pose frames OOD detection as a maximum likelihood problem;
samples with a low likelihood in our framework have limited representation in the training
set. Our premise is that pose estimators fΘ may not generalize well beyond the training
distribution. While the pose model accurately predicts the pose for images from the training
set, more often than not the model makes errors on images from an unseen distribution.
Formally, let Ŷ = f (x,Θ) where Ŷ = ŷ1 . . . ŷN represents the predicted joints and x the input
image. Can we identify images x for annotation where Ŷ is invalid?

3.1 Visual Likelihood Estimation
Our solution lies in flipping the question: we learn to identify when Ŷ is valid since the
space of valid poses is much smaller than the set of invalid poses. However, what makes a
pose valid? Indeed, a random collection of keypoints rarely makes a recognizable pose, the
key to a valid pose is structure defined by the keypoints. We represent this skeletal structure
with a simple parametric Bayesian network (Fig. 2, human and hand models), with singular
parent-child chains. Such an approach allows us to exploit the Markov blanket principle of
independence and simplify our analysis as well as model relations between various joints
in an interpretable manner. Let q(Y |x,θ) = q(y1,y2 . . .yN |x,θ) represents the distribution of
joints yi and θ represents the parameters of the Bayesian network. Using the chain rule of
probability and the Markov blanket, we can now decompose this distribution into a linear
chain capturing pairwise dependencies:
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Figure 2: Skeletal Model: While the pose estimator models joint localization ppose(Y = y),
the parametric Bayesian network models the much simpler qBN(Y1 = yi|Y2 = y j) where the
child is conditioned only on the parent joint. VL4Pose incorporates both ppose and qBN to
model the distribution of poses for an image.

qBN(y1,y2 . . .yN |x,θ) = q(y1|y2 . . .yN ,x,θ)q(y2|y3 . . .yN ,x,θ) . . .q(yN |x,θ)

qBN(y1,y2 . . .yN |x,θ) =
[N−1

∏
i=1

q(yi|yi+1,x,θ)
]

q(yN |x,θ) (1)

Here yN represents the joint corresponding to the root node. We specifically note that
this formulation is simple; for instance intuition suggests that the subset of joints forming the
torso are not independent of each other, a fact that is oversimplified by our formulation. For
instance, complex graphical models have been successfully used [1, 32, 40, 55] to improve
pose estimation. However, we recall that our goal is to solve the simpler task of out-of-
distribution detection, and the proposed framework succeeds in achieving this objective.

Traditional application of maximum likelihood involves finding a set of parameters that
maximizes the likelihood of our observations X ,Y , where both X and Y are deterministic.
However, the observation X ,Y need not be deterministic; for example in human pose estima-
tion a joint can have multiple plausible locations based on the local maxima in the heatmap.
Let ppose(Y ) = ppose(y1,y2 . . .yN) = ∏

N
i=1 p(yi) represent the pose estimator’s (human/hand)

distribution over the joints y1 . . .yN . Note that our assumption of independence is in line with
the training objective of popular pose estimators [8, 38, 49]. The expected log-likelihood w.r.t
the set of keypoints is:

EY

[
log qBN(y1,y2 . . .yN |x,θ)

]
(2)

Substituting Eq. 1 in Eq. 2 and expanding, we get (full derivation in supplementary):

∑
Y

[
ppose(yN) log qBN(yN |x,θ) +

N−1

∑
i

ppose(yi) log qBN(yi|yi+1,X ,θ)

]
(3)

Since Y represents the set of keypoint random variables, expectation over Y is the weighted
likelihood over all possible pose configurations. Therefore, computing the expected likeli-
hood allows us to incorporate a distribution over Y into the framework. Intuitively, ppose
allows us to model keypoint ambiguity whereas qBN models the the ambiguity associated
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with the entire pose. The auxiliary network uses visual cues from the image to fit the param-
eters θ such that the likelihood over the training distribution is maximized. Therefore, poses
incurring a low-likelihood correspond to out-of-distribution samples. Annotating such sam-
ples increases the spread of the training distribution resulting in better performing models.
Since gradients of θ are detached from the pose estimator Θ, we train the two networks si-
multaneously. During the training phase, we can directly observe both the parent yi+1 as well
as child joints yi to compute the likelihood. In the absence of ground truth (while performing
active learning), we rely on the predictions of the pose estimator Ŷ = f (x,Θ) to estimate the
likelihood.

The computation of ∑Y and qBN(yi|yi+1,X ,θ) depends upon the architecture (direct key-
point regression or heatmap) which we discuss now in greater detail.

3.1.1 Direct Keypoint Regression

Modelling qBN(yi|yi+1,X ,θ). We refer to the DeepPrior [8] architecture, which uses fully
connected layers to directly regress 3D keypoints (yi ∈ Rjoints×3) for hand pose estimation.
To impose conditional dependency, we predict the offset to obtain the child joint given the
parent joint: yi = yi+1 + ôi. The offset is learnt by the parametric network ôi = g1(x,θ). Our
belief is that the yi can be completely recovered given the parent yi+1 and visual cues from
image X. Further, we also learn the covariance matrix Σi = g2(x,θ) [11, 17, 25, 35] that
determines the spread around the offset for the child joint. Therefore:

qBN(yi|yi+1,x,θ) =N
(

yi − [yi+1 + ôi], Σi

)
(4)

Modelling ∑Y . For hand pose estimation Y = f (x,Θ) is a point estimate which implies there
exists exactly one pose configuration; p(yi) = {1 at ground truth location, 0 otherwise} ∀i.
This eliminates the need to sum over all possible pose configurations in Eq. 3, simplifying
the computation.

3.1.2 Heatmap Regression

Modelling qBN(yi|yi+1,X ,θ). A significant portion of errors in human pose are due to in-
correct association of left-right joints and keypoint swaps within the pose [21]. If we treat
the offset as vectors, these sources of errors would cause some components of the offsets
to average out during training leading to poor results. Hence we use an euclidean distance
based measure which intuitively tries to find the optimal bone length di = g(x,θ) between
the parent and child joint (yi+1 and yi respectively). Specifically:

q(yi|yi+1,x,θ) =N (dist(yi,yi+1)− d̂i , σi) (5)

Learning the bone length is easier and is less strict in comparison to offsets, with our ob-
servations confirming that convergence is better for a distance based modelling approach for
human pose estimation.

Modelling ∑Y . During the training phase, we have access to the ground truth values which
are point estimates for Y = f (x,Θ). Therefore, the summation over all poses is reduced to
one pose configuration to train the auxiliary network θ via maximum likelihood. However,
during the active learning phase (no ground truth) we need to rely on the pose estimator’s
predictions which consists of heatmaps h ∈Rjoints×64×64 that represents a spatial probability
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distribution p(yi) for a joint yi ∈R2. Yet, computing the expectation over the entire heatmap
is infeasible. Instead, we limit the domain of p(yi) to only the local maxima of the heatmap
hi and thereby showing that Multi-Peak Entropy [34] can be viewed as a consequence of
maximizing the likelihood of poses. We then apply softmax normalization to provide a prob-
abilistic interpretation of various local maxima being the true location of joint i. Therefore,
we replace p(yi) with p̂(yi) = softmax(local_maxima(hi)) and the domain of p̂(yi)
now restricted to the location of the local_maxima of hi.

3.2 Discussion
Uncertainty For Pose Estimation. Although multiple recent works [8, 17, 29, 34, 35] ex-
plore uncertainty for pose estimation, they suffer from a few limitations. Inspired by Kendall
and Gal [25], some approaches [8, 17, 35] model heteroscedastic aleatoric uncertainty by
learning a covariance matrix of the order O(n2) where n represents the number of keypoints.
This leads to two drawbacks: First, a much larger network is required to learn a fit for the co-
variance matrix. Second, larger networks tend to learn spurious correlations. Additionally,
we believe that the definition of aleatoric uncertainty is misinterpreted in pose estimation
(detailed in supplementary material) and hence we do not specify the uncertainty learnt by
VL4Pose. Caramalau et al. [8] assumes independence between joints which is incorrect.
Intuition suggests that observing a variable leads to a decrease in uncertainty for a corre-
lated variable. While both Liu and Ferrari [34] and Kundu et al. [29] share our approach of
modelling joint level ambiguity, [34] does not model pose uncertainty, whereas [29] uses a
domain adaptation specific approach of modelling pose uncertainty. In contrast, VL4Pose
provides a mathematical framework that incorporates both joint and pose level uncertainty
for different network architectures. The method employs a linear chain of probabilities,
therefore reducing the order of the variance / covariance matrix to O(n). Further, VL4Pose
directly captures the correlation between neighboring joints, limiting the possibility of learn-
ing spurious correlations.

Auxiliary Network. The Bayesian network is parameterized through an auxiliary neural
network as shown in Fig. 1. Initially the network captures features from the pose estima-
tor at various scales by using an appropriate convolutional kernel to downsize and add the
larger feature map to the next smaller feature map. This is progressively done till we reach
the smallest feature map, and subsequently perform global average pooling to obtain a one-
dimensional feature. This is followed by simple fully connected layers, with the final layer
predicting the parameters for each link in the skeleton. The network is trained to minimize
the negative log-likelihood (Eq. 3). The two stage hourglass has ≈ 8.4M parameters, with
the auxiliary network adding a further ≈ 2.1M parameters.

Hardware and Time Complexity. We use two setups: Mobile computing (AMD Ryzen
5000, NVIDIA RTX 3060 Mobile) and server grade (Intel Xeon, NVIDIA V100). VL4Pose
takes ≈ 30ms to process each image on both the setups (also implying that our hardware is
not fully utilized). There are four real-time algorithms: VL4Pose, Learning Loss, Aleatoric
uncertainty and Multi-Peak entropy. The former three have similar processing times (≈
30FPS) as they have near identical parametric networks, whereas Multi-Peak entropy is
marginally faster since it benefits from a highly vectorized implementation. The inference
time does not depend on the number of samples and have a complexity of O(1) for a fixed
model. In contrast, other algorithms are not designed for real-time use: graph based methods
such as CoreSet, MCD-CKE, EGL++, GCN have a time complexity of at least O(mn) since
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Figure 3: Pose Refinement: Smaller but well placed local maxima are more likely to define a
valid pose in comparison to poorly positioned global maxima.

they model the interaction between all m unlabelled and n labelled samples. MATAL uses
reinforcement learning which is compute intensive; the most efficient method takes 2 hours
for active learning [14].

Pose Refinement: Human Pose Estimation. Surprisingly, a minor tweak to VL4Pose
can also allow us to perform pose refinement [24, 37, 39, 54] in certain scenarios, which to
the best of our knowledge is the first active learning algorithm to do so. We categorically state
that we do not intend to compete with state-of-the-art in pose refinement, but our intention
is to highlight the versatility associated with VL4Pose in comparison to other active learning
algorithms. Fig. 3 provides some intuition into the interplay between skeletal structure
qBN and heatmap ambiguity ppose. Conventional human pose estimation approaches rely
on inferring keypoints as the global maxima of their respective heatmaps. However, certain
poses may have a higher likelihood by incorporating local maxima that better explain the
skeletal structure. Mathematically, instead of computing the expected likelihood over all
poses (Eq. 3), we find the pose configuration that results in the highest likelihood:

Y ∗ = argmax
[

ppose(yN) log qBN(yN |x,θ) +
N−1

∑
i

ppose(yi) log qBN(yi|yi+1,X ,θ)

]
(6)

4 Experiments
Goal: VL4Pose is an algorithm for on-device active learning, which is not only competitive
but also works in real-time due to lower compute costs. Our experiments cover uncertainty
and likelihood estimation, which forms the core of VL4Pose. We provide qualitative visual-
izations as well as quantitative comparisons through active learning to highlight how the un-
certainties learnt by the model play a role in out-of-distribution detection. Our code is avail-
able at: https://github.com/meghshukla/ActiveLearningForHumanPose

Qualitative analysis. Fig. 4(a) is generated by visualizing the distributions correspond-
ing to offsets for hand pose and distances for human pose (visualization method described
in the supplementary material). We observe that images with a low log-likelihood are a
case where the joint predictions do not match the conditional distribution and are out-of-
distribution. We observe that the accuracy of model predictions is highly correlated with the
log-likelihood value; poor scores are correlated to poor predictions. Another important ob-
servation is that highly correlated parent-child joints have a higher degree of certainty given
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Figure 4: [Please zoom in] (a) Visualizing qBN(yi|yi+1,x,θ): The skeleton represents the pose
estimator’s predictions Ŷ = f (x,Θ) and filled circles are the ground truth Y . We highlight
the correlation between pose uncertainty and likelihood, and likelihood with actual model
performance (b) Pose refinement: The skeleton represents the optimal pose configuration
Y ∗ that maximizes the likelihood, and filled circles are the the pose estimator’s predictions
Ŷ = f (x,Θ). We highlight VL4Pose’s potential to identify the correct pose Y ∗ even when Ŷ
has minor errors (marked in arrows). Additional images in supplementary.

the parent. Previous methods discarded correlation, and hence double counted the uncer-
tainty for highly correlated joints. Fig. 4(b) highlights VL4Pose’s ability to refine poses
when the model gets a few joints wrong. VL4Pose is the first active learning algorithm to
perform pose refinement since pose is explicitly being modelled by our method.

Quantitative analysis. We use the same active learning experiment setup as in [8, 47,
48, 57]. We conduct our experiments on human pose using two single person datasets: MPII
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MPII: (PCKh, Percentage Correct Keypoints - head) Mean±Std. Dev. (5 runs)
#images → 2000 3000 4000 5000 6000
Methods µ σ µ σ µ σ µ σ µ σ

Random 78.05 0.55 81.59 0.33 84.2 0.27 85.94 0.23 87.43 0.21
Core-set [43] 75.66 1.22 80.52 1.15 84.1 0.54 86.08 0.35 87.68 0.31
Learning Loss [48, 57] 77.09 0.96 82.47 0.46 85.15 0.36 86.83 0.28 87.95 0.24
EGL++ [47] 78.54 0.71 82.03 0.61 84.39 0.22 86.11 0.32 87.78 0.48
Aleatoric [25] 76.07 1.12 82.03 0.52 84.62 0.62 86.76 0.62 88.0 0.25
Multi-peak [34] 82.49 0.72 84.62 0.46 85.88 0.31 87.47 0.51 88.54 0.71
VL4Pose 82.3 0.93 84.71 0.72 86.16 0.66 87.71 0.33 88.96 0.38

LSP and LSPET: Mean±Sigma (5 runs)
#images → 2000 3000 4000 5000 6000
Methods µ σ µ σ µ σ µ σ µ σ

Random 74.24 0.68 76.91 0.91 79.11 0.64 80.56 0.35 81.47 0.65
Core-set [43] 74.26 0.61 76.89 0.96 79.06 0.39 80.14 0.47 80.94 0.50
Learning Loss [48, 57] 73.99 0.28 76.71 0.63 78.53 0.37 79.91 0.37 80.77 0.24
EGL++ [47] 74.51 1.02 77.32 0.69 79.26 0.69 80.68 0.45 81.76 0.24
Aleatoric [25] 74.24 0.60 76.94 0.47 79.15 0.62 80.11 0.40 80.91 0.49
Multi-peak [34] 77.24 0.61 79.56 0.46 81.29 0.31 82.81 0.5 83.11 0.71
VL4Pose 77.36 0.68 79.71 0.50 81.48 0.46 82.75 0.49 83.69 0.47

ICVL: (MSE, Mean Square Error) Mean±Std. Dev. (5 runs)
#images → 200 400 600 800 1000
Methods µ σ µ σ µ σ µ σ µ σ

Random 16.83 0.84 15.31 0.45 14.12 0.53 13.68 0.44 13.21 0.35
Core-set [43] 16.86 0.74 14.73 0.46 14.02 0.81 13.69 0.49 13.43 0.44
MCD-CKE [8] 19.88 0.38 15.06 0.43 13.61 0.46 12.85 0.71 12.54 0.59
CoreGCN [9] 17.84 0.44 14.68 0.53 13.27 0.56 12.91 0.81 12.69 0.41
VL4Pose 16.87 0.47 14.89 0.52 13.64 0.51 13.02 0.77 12.84 0.54

Table 1: Active Learning Simulation: Human Pose: MPII, LSP-LSPET and Hand Pose:
ICVL. Both PCK/PCKh and Mean Square Error (MSE) indicate accuracy of predictions,
with higher values being better for PCK/PCKh and lower the better for MSE.

[2] and LSP/LSPET [22, 23]. For hand pose, we use the ICVL dataset [50]. Following [34]
we subsample MPII to contain images with persons having all joints. Since VL4Pose does
not model diversity, we follow [8, 57] by performing an initial round of random sampling
every active learning cycle followed by VL4Pose (for ICVL dataset only). We differ from
[47] in two aspects: we train the network to predict occluded joints and take larger crops
around persons to add variability. We use different model architectures (Stacked Hourglass
[Human Pose][38] - following [47, 57] and DeepPrior [Hand Pose] - defined and followed
by [8, 9]). Tab. 1 shows that VL4Pose performs favourably amongst all algorithms with
low compute (capable of running at 30FPS): Learning Loss [57], Aleatoric Uncertainty [8],
Multi-peak entropy [34]. Multi-Peak is architecture specific and does not extend to hand
pose. Learning Loss and Aleatoric lack in performance since they do not explicitly model
the pose. In comparison to state-of-the-art (MATAL [14] and GCN [9]), VL4Pose reports
competitive but slightly inferior numbers. However, both methods are compute intensive and
cannot be used for real-time on-device active learning.

5 Conclusion
VL4Pose is about making the small things click; how far can incorporating simple domain
knowledge take us? We answer this with a framework that models simple skeletal constraints
to identify out-of-distribution samples. The method seamlessly unifies joint and pose level
uncertainty, allowing for better uncertainty estimates. We qualitatively and quantitatively
assess VL4Pose, noting that the method is interpretable, real-time, architecture agnostic and
competitive with the state-of-the-art, making it suitable for on-device active learning. While
pose refinement was an unintended consequence, we lay foundation for future work to incor-
porate complex skeletal models to push the barriers for out-of-distribution, active learning
and pose refinement simultaneously.
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