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1 Introduction
This is the supplementary material for the paper Part-based Face Recognition with Vision
Transformers. We first exhibit the detailed choice of data augmentation we used to enhance
fViT in Section 2.1.1. Then we list the model details adopted for our fViT in Section 2.1.2.
Effect of data augmentation, the overlapping rate of landmarks and the comparison of choice
of landmark CNN are also included as the additional ablation study in Section 2.2. Finally,
we describe learned landmark network is effective for the side task of Application to unsu-
pervised landmark discovery in Section 2.3.

2 Additions to section 4: Experiments

2.1 Implementation details

2.1.1 Training details

For training the Transformer, we opted to use a large amount of data augmentation compared
to the original face recognition setting used in ResNets. Specifically, we used stochastic
depth regularization with probability 0.1 [6], resize & crop in the range [0.9,1.0], RandAug-
ment [1] with magnitude of 2, and without the solarize and invert operations, Mixup [16]
with alpha=0.5 and probability of 0.2, Cutout with value 0.1, and weight decay 1e-1 for
the ViT backbone and 5e-2 for the Landmark CNN. We adopted AdamW [8] and the co-
sine learning rate decay followed by warm-up of 5 epochs, while we trained in total for 34
epochs. All networks are trained from scratch.

Model Hidden size Parameters FLOPS
part fViT-B 768 66M 12.64G

fViT-B 768 63M 12.58G
Resnet-100 - 65M 12.10G
part fViT-S 512 46M 8.96G

fViT-S 512 43M 8.90G
Resnet-50 - 43.59M 6.33G

Table 1: Network sizes and FLOPS for our fViT and Part fViT and Resnet
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2.1.2 Model details

To fairly compare with Resnet [2] which is used as the backbone in most recent methods, we
constructed our fViT in order to have a similar model size and FLOPS with Resnet-100. Our
base configuration for fViT, called fViT-B, has 12 layers, 11 attention heads and d = 768.
We also built a fViT-S. Our models and Resnet-100 are compared in Table 1. As can be
observed, our fViT-B has similar model size and FLOPS with Resnet-100. Our landmark
network is a MobilenetV3 [4] unless otherwise specified. All models are implemented in
PyTorch [10].

2.2 Additional Ablation Study

2.2.1 Effect of different data augmentations

Here we present effectiveness of the choice of different augmentations suggested in [14]
starting from random filp. Results can be found in 2, we can observe that with more data
augmentation are added, more accurate results will be gained.

Exp Flip Randaug Res&Crop Stostich Mixup Cutout Warm-up LFW CFP-FP AgeDB-30 IJB-C
1

√
99.63 95.72 97.1 95.29

2
√ √

99.68 96.84 97.55 95.87
3

√ √ √
99.70 97.23 97.26 95.98

4
√ √ √ √

99.73 97.40 97.30 96.05
5

√ √ √ √ √
99.76 98.19 97.60 96.13

6
√ √ √ √ √ √

99.78 98.37 97.67 96.23
7

√ √ √ √ √ √ √
99.80 98.78 97.85 96.37

Table 2: Impact of data augmentation

2.2.2 Degree of overlapping

We also examiate the degree of overlapping patches trained by our network, we calculate the
mean and variance overlap rate of the closest patches, listed in Table 3.The overlap rate for
the large pose datasets CFP-FP& IJB-C is higher than that for other datasets.

LFW CFP-FP AgeDB-30 IJB-C
R=16 0.5007±0.0002 0.5250±0.0016 0.4980±0.0002 0.5099±0.0007
R=49 0.3993±0.0002 0.4665±0.0064 0.3997±0.0001 0.4279±0.0003

R=196 0.2681±0.0001 0.2950±0.0010 0.2684±0.00008 0.2789±0.0005
Table 3: The overlap rate of the neighboring patches obtained by our part fVIT-B with R=16,
49 and 196

2.2.3 Effect of different landmark CNNs

We conducted an experiment to evaluate the impact of using different CNNs for landmark
network. Specifically, we also chose Resnet-50[3]. The model used is the part fViT-B, with
R = 196 landmarks. Table 4 shows the obtained results. We conclude that a larger landmark
CNN does not further boost the final accuracy.
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Landmark Network LFW CFP-FP AgeDB IJB-C
fViT 99.85 99.01 98.13 97.21

part fViT (MobilenetV3) 99.83 99.21 98.29 97.29
part fViT (ResNet50) 99.81 99.14 98.35 97.11

Table 4: Impact of landmark CNNs on face recognition accuracy.

2.3 Application to unsupervised landmark discovery

We opted for a quantitative evaluation of the facial landmarks discovered by our landmark
CNN using the evaluation protocol and codebase of [12]. Specifically, we follow [12] and
report the so-called forward error on the whole MAFL & AFLW datasets in Table 5. The
forward error is a measure of landmark stability, its pipeline is to train a regressor with
predicted landmarks as the training data and 5 manually labelled landmarks on the MAFL &
AFLW datasets as the test set. The more stable the predicted landmarks are, the better they
map to the ground truth (for details and forward error definition, please see[12]). As it can
be observed our method offers competitive results with recently proposed methods which
are exclusively designed for unsupervised landmark localization.

Method MAFL AFLW
Supervised TCDCN [19] 7.95 7.65

MTCNN [18] 5.39 6.90
Unsupervised Thewlis [15] 7.15 -

Jakab [5] 3.19 6.86
Zhang [17] 3.46 7.01
Shu [13] 5.45 -

Sahasrabudhe [11] 6.07 -
Sanchez [12] 3.99 6.69

Mallis [9] 4.12 7.37
Li [7] 3.08 6.20

Ours Landmark CNN 4.87 10.22
Landmark CNN (R = 49) 3.37 7.16
Landmark CNN (R = 16) 3.88 7.69

Table 5: Comparison on unsupervised landmark discovery. Forward error results [12] are
reported on the whole MAFL & AFLW datasets.
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